↓ Skip to main content

Volatile organic compounds (VOC), formaldehyde and nitrogen dioxide (NO2) in schools in Johor Bahru, Malaysia: Associations with rhinitis, ocular, throat and dermal symptoms, headache and fatigue

Overview of attention for article published in Science of the Total Environment, March 2017
Altmetric Badge

About this Attention Score

  • Good Attention Score compared to outputs of the same age (69th percentile)
  • Good Attention Score compared to outputs of the same age and source (67th percentile)

Mentioned by

policy
1 policy source
twitter
4 X users

Citations

dimensions_citation
92 Dimensions

Readers on

mendeley
224 Mendeley
citeulike
1 CiteULike
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Volatile organic compounds (VOC), formaldehyde and nitrogen dioxide (NO2) in schools in Johor Bahru, Malaysia: Associations with rhinitis, ocular, throat and dermal symptoms, headache and fatigue
Published in
Science of the Total Environment, March 2017
DOI 10.1016/j.scitotenv.2017.02.215
Pubmed ID
Authors

Dan Norbäck, Jamal Hisham Hashim, Zailina Hashim, Faridah Ali

Abstract

This paper studied associations between volatile organic compounds (VOC), formaldehyde, nitrogen dioxide (NO2) and carbon dioxide (CO2) in schools in Malaysia and rhinitis, ocular, nasal and dermal symptoms, headache and fatigue among students. Pupils from eight randomly selected junior high schools in Johor Bahru, Malaysia (N=462), participated (96%). VOC, formaldehyde and NO2 were measured by diffusion sampling (one week) and VOC also by pumped air sampling during class. Associations were calculated by multi-level logistic regression adjusting for personal factors, the home environment and microbial compounds in the school dust. The prevalence of weekly rhinitis, ocular, throat and dermal symptoms were 18.8%, 11.6%, 15.6%, and 11.1%, respectively. Totally 20.6% had weekly headache and 22.1% fatigue. Indoor CO2 were low (range 380-690 ppm). Indoor median NO2 and formaldehyde concentrations over one week were 23μg/m(3) and 2.0μg/m(3), respectively. Median indoor concentration of toluene, ethylbenzene, xylene, and limonene over one week were 12.3, 1.6, 78.4 and 3.4μg/m(3), respectively. For benzaldehyde, the mean indoor concentration was 2.0μg/m(3) (median<1μg/m(3)). Median indoor levels during class of benzene and cyclohexane were 4.6 and 3.7μg/m(3), respectively. NO2 was associated with ocular symptoms (p<0.001) and fatigue (p=0.01). Formaldehyde was associated with ocular (p=0.004), throat symptoms (p=0.006) and fatigue (p=0.001). Xylene was associated with fatigue (p<0.001) and benzaldehyde was associated with headache (p=0.03). In conclusion, xylene, benzaldehyde, formaldehyde and NO2 in schools can be risk factors for ocular and throat symptoms and fatigue among students in Malaysia. The indoor and outdoor levels of benzene were often higher than the EU standard of 5μg/m(3).

X Demographics

X Demographics

The data shown below were collected from the profiles of 4 X users who shared this research output. Click here to find out more about how the information was compiled.
As of 1 July 2024, you may notice a temporary increase in the numbers of X profiles with Unknown location. Click here to learn more.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 224 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Malaysia 1 <1%
Unknown 223 100%

Demographic breakdown

Readers by professional status Count As %
Student > Master 34 15%
Student > Bachelor 34 15%
Student > Ph. D. Student 28 13%
Researcher 19 8%
Lecturer 11 5%
Other 26 12%
Unknown 72 32%
Readers by discipline Count As %
Environmental Science 31 14%
Engineering 24 11%
Medicine and Dentistry 18 8%
Nursing and Health Professions 9 4%
Chemistry 8 4%
Other 48 21%
Unknown 86 38%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 6. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 30 December 2021.
All research outputs
#6,498,682
of 25,382,440 outputs
Outputs from Science of the Total Environment
#8,265
of 29,635 outputs
Outputs of similar age
#101,134
of 336,732 outputs
Outputs of similar age from Science of the Total Environment
#110
of 342 outputs
Altmetric has tracked 25,382,440 research outputs across all sources so far. This one has received more attention than most of these and is in the 74th percentile.
So far Altmetric has tracked 29,635 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 10.6. This one has gotten more attention than average, scoring higher than 71% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 336,732 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 69% of its contemporaries.
We're also able to compare this research output to 342 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 67% of its contemporaries.