↓ Skip to main content

Fitness homeostasis across an experimental water gradient predicts species' geographic range and climatic breadth

Overview of attention for article published in Ecology, September 2022
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (87th percentile)
  • Above-average Attention Score compared to outputs of the same age and source (60th percentile)

Mentioned by

blogs
1 blog
twitter
4 X users

Citations

dimensions_citation
2 Dimensions

Readers on

mendeley
10 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Fitness homeostasis across an experimental water gradient predicts species' geographic range and climatic breadth
Published in
Ecology, September 2022
DOI 10.1002/ecy.3827
Pubmed ID
Authors

Ian S. Pearse, Patrick McIntyre, N. Ivalú Cacho, Sharon Y. Strauss

Abstract

Species range sizes and realized niche breadths vary tremendously. Understanding the source of this variation has been a long-term aim in evolutionary ecology and is a major tool in efforts to ameliorate the impacts of changing climates on species distributions. Species ranges that span a large climatic envelope can be achieved by a collection of specialized genotypes locally adapted to a small range of conditions, by genotypes with stable fitness across variable environments, or a combination of these factors. We asked whether fitness expressed along a key niche axis, water availability, could explain a species' realized niche breadth--its geographic range and climate breadth-- in 11 species from a clade of jewelflowers whose range sizes vary by two orders of magnitude. Specifically, we explored whether the range size of a species was related to the ability of genotypes (maternal families) to maintain fitness across a range of experimental water availabilities based on 30-year historical field precipitation regimes. We operationally characterized fitness homeostasis through the coefficient of variation (CV) in fitness of a genotype (family) across the experimental water gradient. We found that species with genotypes that had high fitness homeostasis -- low variation in fitness over our treatments --had larger climatic niche breadth and geographic range in their field distributions. The result was robust to alternate measures of fitness homeostasis. Our results show that the fitness homeostasis of genotypes can be a major factor contributing to niche breadth and range size in this clade. Fitness homeostasis can buffer species from loss of genetic diversity and under changing climates, provides time for adaptation to future conditions.

X Demographics

X Demographics

The data shown below were collected from the profiles of 4 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 10 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 10 100%

Demographic breakdown

Readers by professional status Count As %
Lecturer 2 20%
Other 1 10%
Student > Doctoral Student 1 10%
Student > Bachelor 1 10%
Student > Master 1 10%
Other 1 10%
Unknown 3 30%
Readers by discipline Count As %
Agricultural and Biological Sciences 3 30%
Biochemistry, Genetics and Molecular Biology 1 10%
Environmental Science 1 10%
Economics, Econometrics and Finance 1 10%
Engineering 1 10%
Other 0 0%
Unknown 3 30%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 14. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 05 August 2022.
All research outputs
#2,473,496
of 24,219,576 outputs
Outputs from Ecology
#1,242
of 6,777 outputs
Outputs of similar age
#51,700
of 423,879 outputs
Outputs of similar age from Ecology
#26
of 64 outputs
Altmetric has tracked 24,219,576 research outputs across all sources so far. Compared to these this one has done well and is in the 89th percentile: it's in the top 25% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 6,777 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 13.3. This one has done well, scoring higher than 81% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 423,879 tracked outputs that were published within six weeks on either side of this one in any source. This one has done well, scoring higher than 87% of its contemporaries.
We're also able to compare this research output to 64 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 60% of its contemporaries.