↓ Skip to main content

Effects of Salt Loading on Plasma Osteoprotegerin Levels and Protective Role of Potassium Supplement in Normotensive Subjects

Overview of attention for article published in Circulation Journal, November 2016
Altmetric Badge

Mentioned by

twitter
2 X users

Citations

dimensions_citation
6 Dimensions

Readers on

mendeley
18 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Effects of Salt Loading on Plasma Osteoprotegerin Levels and Protective Role of Potassium Supplement in Normotensive Subjects
Published in
Circulation Journal, November 2016
DOI 10.1253/circj.cj-16-0756
Pubmed ID
Authors

Fu-Qiang Liu, Sheng-Qiang Liu, Yong Zhang, Yang Wang, Chao Chu, Dan Wang, Shuo Pan, Jun-Kui Wang, Qi Yu, Jian-Jun Mu

Abstract

Excess dietary salt is strongly correlated with cardiovascular disease, morbidity, and mortality. Conversely, potassium likely elicits favorable effects on cardiovascular disorders. In epidemiological studies, increased plasma osteoprotegerin (OPG) concentrations are associated with atherosclerosis and vascular deaths. Our study was designed to examine the effects of salt intake and potassium supplementation on plasma OPG levels in normotensive subjects.Methods and Results:The 18 normotensive subjects were selected from a rural community in China. They were sequentially maintained on low-salt diet for 7 days (3 g/day, NaCl), high-salt diet for 7 days (18 g/day), and high-salt diet with potassium supplementation for 7 days (18 g/day of NaCl+4.5 g/day of KCl). High-salt intake enhanced plasma OPG levels (252.7±13.9 vs. 293.4±16.1 pg/mL). This phenomenon was abolished through potassium supplementation (293.4±16.1 vs. 235.1±11.3 pg/mL). Further analyses revealed that the OPG concentration positively correlated with 24-h urinary sodium excretion (r=0.497, P<0.01). By contrast, OPG concentration negatively correlated with 24-h urinary potassium excretion (r=0.594, P<0.01). Salt loading can enhance the production of circulating OPG. Potassium supplementation can reverse the effects of excessive OPG. Our study results may improve our understanding of the roles of salt and potassium in the risk of cardiovascular disorders.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
As of 1 July 2024, you may notice a temporary increase in the numbers of X profiles with Unknown location. Click here to learn more.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 18 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 18 100%

Demographic breakdown

Readers by professional status Count As %
Student > Bachelor 4 22%
Student > Master 3 17%
Lecturer > Senior Lecturer 1 6%
Student > Ph. D. Student 1 6%
Professor 1 6%
Other 2 11%
Unknown 6 33%
Readers by discipline Count As %
Medicine and Dentistry 5 28%
Nursing and Health Professions 4 22%
Agricultural and Biological Sciences 1 6%
Environmental Science 1 6%
Unknown 7 39%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 27 November 2016.
All research outputs
#20,655,488
of 25,373,627 outputs
Outputs from Circulation Journal
#1,739
of 2,313 outputs
Outputs of similar age
#311,360
of 415,427 outputs
Outputs of similar age from Circulation Journal
#21
of 34 outputs
Altmetric has tracked 25,373,627 research outputs across all sources so far. This one is in the 10th percentile – i.e., 10% of other outputs scored the same or lower than it.
So far Altmetric has tracked 2,313 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 5.1. This one is in the 13th percentile – i.e., 13% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 415,427 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 14th percentile – i.e., 14% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 34 others from the same source and published within six weeks on either side of this one. This one is in the 23rd percentile – i.e., 23% of its contemporaries scored the same or lower than it.