↓ Skip to main content

An Update on Autophagy as a Target in the Treatment of Alzheimer’s Disease

Overview of attention for article published in Current Drug Targets, January 2023
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (86th percentile)
  • High Attention Score compared to outputs of the same age and source (96th percentile)

Mentioned by

news
1 news outlet
twitter
3 X users

Readers on

mendeley
8 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
An Update on Autophagy as a Target in the Treatment of Alzheimer’s Disease
Published in
Current Drug Targets, January 2023
DOI 10.2174/1389450124666230417104325
Pubmed ID
Authors

Parnika Mohan Sose, Gaurav Mahesh Doshi, Pravin Popatrao Kale

Abstract

Proteostasis is crucial for the maintenance and proper operation of cells. Under typical circumstances, the ubiquitin-proteasome system (UPS) and the autophagy-lysosome pathway are used to clean out undesired, damaged, misfolded, or aggregated proteins. Any dysregulation in the above-mentioned pathways leads to neurodegeneration. One of the most renowned neurodegenerative disorders is AD. This condition is more prevalent in senior people and is frequently linked to dementia, progressive memory loss, and cognitive function decline, which further contributes to cholinergic neuron degradation and synaptic plasticity loss. Extracellular accumulation of amyloid beta plaques and the intraneuronal deposition of misfolded neurofibrillary tangles are two prime pathological reasons for AD. At present, there is no treatment for AD. All that remains available is the symptomatic treatment of this disease. Autophagy is the major mechanism by which the cells degrade the protein aggregates. Deposited immature autophagic vacuoles (AVs) in AD brains suggest interruption of a person's normal autophagy process. This review has briefly covered various forms and mechanisms of autophagy. Furthermore, the discussion in the article is supported by different ways and mechanisms via which autophagy can be stimulated in a beneficial way and can emerge as a novel target in the treatment of various metabolic CNS related disorders. In the current review article, the mTOR-dependent ones are PI3K/Akt/TSC/mTOR, AMPK/TSC/mTOR, and Rag/mTOR pathways and mTOR-independent ones which include Ca2+/calpain, inositol-dependent, cAMP/EPAC/PLC, and JNK1/Beclin-1/PI3K pathways have been discussed in details. The article sheds light on drugs which are validated with details in tabular form from recent updates in clinical trials.

Timeline

Login to access the full chart related to this output.

If you don’t have an account, click here to discover Explorer

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
As of 1 July 2024, you may notice a temporary increase in the numbers of X profiles with Unknown location. Click here to learn more.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 8 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 8 100%

Demographic breakdown

Readers by professional status Count As %
Student > Master 3 38%
Student > Doctoral Student 1 13%
Other 1 13%
Unknown 3 38%
Readers by discipline Count As %
Neuroscience 2 25%
Biochemistry, Genetics and Molecular Biology 1 13%
Pharmacology, Toxicology and Pharmaceutical Science 1 13%
Unknown 4 50%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 11. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 23 April 2023.
All research outputs
#3,290,777
of 25,765,370 outputs
Outputs from Current Drug Targets
#61
of 1,122 outputs
Outputs of similar age
#66,429
of 480,211 outputs
Outputs of similar age from Current Drug Targets
#1
of 30 outputs
Altmetric has tracked 25,765,370 research outputs across all sources so far. Compared to these this one has done well and is in the 87th percentile: it's in the top 25% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 1,122 research outputs from this source. They receive a mean Attention Score of 4.7. This one has done particularly well, scoring higher than 94% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 480,211 tracked outputs that were published within six weeks on either side of this one in any source. This one has done well, scoring higher than 86% of its contemporaries.
We're also able to compare this research output to 30 others from the same source and published within six weeks on either side of this one. This one has done particularly well, scoring higher than 96% of its contemporaries.