↓ Skip to main content

A Survey of Deep Learning for Detecting miRNA- Disease Associations: Databases, Computational Methods, Challenges, and Future Directions

Overview of attention for article published in IEEE/ACM Transactions on Computational Biology and Bioinformatics, June 2024
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age

Mentioned by

twitter
1 X user

Readers on

mendeley
2 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
A Survey of Deep Learning for Detecting miRNA- Disease Associations: Databases, Computational Methods, Challenges, and Future Directions
Published in
IEEE/ACM Transactions on Computational Biology and Bioinformatics, June 2024
DOI 10.1109/tcbb.2024.3351752
Pubmed ID
Authors

Nan Sheng, Xuping Xie, Yan Wang, Lan Huang, Shuangquan Zhang, Ling Gao, Hao Wang

Abstract

MicroRNAs (miRNAs) are an important class of non-coding RNAs that play an essential role in the occurrence and development of various diseases. Identifying the potential miRNA-disease associations (MDAs) can be beneficial in understanding disease pathogenesis. Traditional laboratory experiments are expensive and time-consuming. Computational models have enabled systematic large-scale prediction of potential MDAs, greatly improving the research efficiency. With recent advances in deep learning, it has become an attractive and powerful technique for uncovering novel MDAs. Consequently, numerous MDA prediction methods based on deep learning have emerged. In this review, we first summarize publicly available databases related to miRNAs and diseases for MDA prediction. Next, we outline commonly used miRNA and disease similarity calculation and integration methods. Then, we comprehensively review the 48 existing deep learning-based MDA computation methods, categorizing them into classical deep learning and graph neural network-based techniques. Subsequently, we investigate the evaluation methods and metrics that are frequently used to assess MDA prediction performance. Finally, we discuss the performance trends of different computational methods, point out some problems in current research, and propose 9 potential future research directions. Data resources and recent advances in MDA prediction methods are summarized in the GitHub repository https://github.com/sheng-n/DL-miRNA-disease-association-methods.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
As of 1 July 2024, you may notice a temporary increase in the numbers of X profiles with Unknown location. Click here to learn more.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 2 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 2 100%

Demographic breakdown

Readers by professional status Count As %
Student > Master 1 50%
Unknown 1 50%
Readers by discipline Count As %
Unspecified 1 50%
Unknown 1 50%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 09 January 2024.
All research outputs
#17,821,238
of 26,103,952 outputs
Outputs from IEEE/ACM Transactions on Computational Biology and Bioinformatics
#500
of 1,103 outputs
Outputs of similar age
#80,979
of 162,103 outputs
Outputs of similar age from IEEE/ACM Transactions on Computational Biology and Bioinformatics
#1
of 1 outputs
Altmetric has tracked 26,103,952 research outputs across all sources so far. This one is in the 21st percentile – i.e., 21% of other outputs scored the same or lower than it.
So far Altmetric has tracked 1,103 research outputs from this source. They receive a mean Attention Score of 2.4. This one is in the 41st percentile – i.e., 41% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 162,103 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 37th percentile – i.e., 37% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 1 others from the same source and published within six weeks on either side of this one. This one has scored higher than all of them