↓ Skip to main content

Generation of Alveolar Epithelial Spheroids via Isolated Progenitor Cells from Human Pluripotent Stem Cells

Overview of attention for article published in Stem Cell Reports, August 2014
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (92nd percentile)
  • Good Attention Score compared to outputs of the same age and source (75th percentile)

Mentioned by

blogs
1 blog
twitter
3 X users
patent
16 patents

Citations

dimensions_citation
274 Dimensions

Readers on

mendeley
239 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Generation of Alveolar Epithelial Spheroids via Isolated Progenitor Cells from Human Pluripotent Stem Cells
Published in
Stem Cell Reports, August 2014
DOI 10.1016/j.stemcr.2014.07.005
Pubmed ID
Authors

Shimpei Gotoh, Isao Ito, Tadao Nagasaki, Yuki Yamamoto, Satoshi Konishi, Yohei Korogi, Hisako Matsumoto, Shigeo Muro, Toyohiro Hirai, Michinori Funato, Shin-Ichi Mae, Taro Toyoda, Aiko Sato-Otsubo, Seishi Ogawa, Kenji Osafune, Michiaki Mishima

Abstract

No methods for isolating induced alveolar epithelial progenitor cells (AEPCs) from human embryonic stem cells (hESCs) and induced pluripotent stem cells (hiPSCs) have been reported. Based on a study of the stepwise induction of alveolar epithelial cells (AECs), we identified carboxypeptidase M (CPM) as a surface marker of NKX2-1(+) "ventralized" anterior foregut endoderm cells (VAFECs) in vitro and in fetal human and murine lungs. Using SFTPC-GFP reporter hPSCs and a 3D coculture system with fetal human lung fibroblasts, we showed that CPM(+) cells isolated from VAFECs differentiate into AECs, demonstrating that CPM is a marker of AEPCs. Moreover, 3D coculture differentiation of CPM(+) cells formed spheroids with lamellar-body-like structures and an increased expression of surfactant proteins compared with 2D differentiation. Methods to induce and isolate AEPCs using CPM and consequently generate alveolar epithelial spheroids would aid human pulmonary disease modeling and regenerative medicine.

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
As of 1 July 2024, you may notice a temporary increase in the numbers of X profiles with Unknown location. Click here to learn more.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 239 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Kenya 1 <1%
Unknown 238 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 43 18%
Researcher 43 18%
Student > Master 29 12%
Student > Bachelor 19 8%
Student > Doctoral Student 13 5%
Other 27 11%
Unknown 65 27%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 59 25%
Agricultural and Biological Sciences 37 15%
Medicine and Dentistry 29 12%
Engineering 13 5%
Pharmacology, Toxicology and Pharmaceutical Science 7 3%
Other 19 8%
Unknown 75 31%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 19. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 02 January 2024.
All research outputs
#1,910,618
of 25,371,288 outputs
Outputs from Stem Cell Reports
#558
of 2,142 outputs
Outputs of similar age
#19,267
of 247,543 outputs
Outputs of similar age from Stem Cell Reports
#9
of 36 outputs
Altmetric has tracked 25,371,288 research outputs across all sources so far. Compared to these this one has done particularly well and is in the 92nd percentile: it's in the top 10% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 2,142 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 25.4. This one has gotten more attention than average, scoring higher than 73% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 247,543 tracked outputs that were published within six weeks on either side of this one in any source. This one has done particularly well, scoring higher than 92% of its contemporaries.
We're also able to compare this research output to 36 others from the same source and published within six weeks on either side of this one. This one has done well, scoring higher than 75% of its contemporaries.