↓ Skip to main content

Aluminum and benzo[a]pyrene co-operate to induce neuronal apoptosis in vitro

Overview of attention for article published in Journal of Toxicological Sciences, January 2015
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
1 X user

Citations

dimensions_citation
16 Dimensions

Readers on

mendeley
14 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Aluminum and benzo[a]pyrene co-operate to induce neuronal apoptosis in vitro
Published in
Journal of Toxicological Sciences, January 2015
DOI 10.2131/jts.40.365
Pubmed ID
Authors

Yin Jinzhu, Zhang Qinli, Yang Jin, Kang Pan, Huang Jianjun, Niu Qiao

Abstract

Toxic and harmful factors co-exist in the environment; these factors often interact to induce combined toxicity, which is the main focus of toxicological research. Furthermore, a large number of studies have shown that aluminum (Al) and benzo[a]pyrene (BaP) are neurotoxic and target the central nervous system to cause neuronal apoptosis. Because we are exposed to both Al and BaP in the air, water, food, and even medicine, the combined effects of these agents in humans must be examined. The present study examines the ability of Al and BaP co-exposure to intensify neuronal apoptosis. The primary neurons of newborn rats were cultured for 5 days, and cells from the same batch that were growing well were selected and assigned to the blank control group, the solvent control group (DMSO+S9+maltol), BaP groups (10, 40 μmol/L), Al (mal)3 groups (50, 100, 400 μmol/L) and co-exposure groups with different combinations of BaP and Al (mal)3. The cell viabilities indicated that 10 μM BaP or 50 μM Al (mal)3 was mildly toxic, and we selected 10 μM BaP+50 μM Al (mal)3 for subsequent co-exposure experiments. The morphological characteristics of cell apoptosis were much more obvious in the co-exposure group than in the Al-exposed cells or the BaP-exposed cells, as observed with a transmission electron microscope and a fluorescence inverted microscope. The apoptotic rates and caspase-3 activity quantitatively significantly differed between the co-exposure and Al-exposure groups, while the BaP-exposure group did not significantly differ from the control group. These results indicate that Al and BaP co-exposure exert synergistic effects on neuronal cell apoptosis.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
As of 1 July 2024, you may notice a temporary increase in the numbers of X profiles with Unknown location. Click here to learn more.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 14 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 14 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 4 29%
Student > Bachelor 3 21%
Student > Ph. D. Student 2 14%
Student > Postgraduate 2 14%
Unknown 3 21%
Readers by discipline Count As %
Medicine and Dentistry 3 21%
Biochemistry, Genetics and Molecular Biology 2 14%
Neuroscience 1 7%
Pharmacology, Toxicology and Pharmaceutical Science 1 7%
Unknown 7 50%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 03 August 2015.
All research outputs
#21,048,638
of 25,850,671 outputs
Outputs from Journal of Toxicological Sciences
#447
of 581 outputs
Outputs of similar age
#269,474
of 362,097 outputs
Outputs of similar age from Journal of Toxicological Sciences
#22
of 38 outputs
Altmetric has tracked 25,850,671 research outputs across all sources so far. This one is in the 10th percentile – i.e., 10% of other outputs scored the same or lower than it.
So far Altmetric has tracked 581 research outputs from this source. They receive a mean Attention Score of 4.9. This one is in the 17th percentile – i.e., 17% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 362,097 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 14th percentile – i.e., 14% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 38 others from the same source and published within six weeks on either side of this one. This one is in the 34th percentile – i.e., 34% of its contemporaries scored the same or lower than it.