↓ Skip to main content

BhbZIP60 from Resurrection Plant Boea hygrometrica Is an mRNA Splicing-Activated Endoplasmic Reticulum Stress Regulator Involved in Drought Tolerance

Overview of attention for article published in Frontiers in Plant Science, February 2017
Altmetric Badge

Mentioned by

twitter
1 X user

Readers on

mendeley
36 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
BhbZIP60 from Resurrection Plant Boea hygrometrica Is an mRNA Splicing-Activated Endoplasmic Reticulum Stress Regulator Involved in Drought Tolerance
Published in
Frontiers in Plant Science, February 2017
DOI 10.3389/fpls.2017.00245
Pubmed ID
Authors

Bo Wang, Hong Du, Zhennan Zhang, Wenzhong Xu, Xin Deng

Abstract

Adverse environmental conditions cause endoplasmic reticulum (ER) stress in plants. To mitigate ER stress damage, ER associated transcription factors and inositol-requiring enzyme-1 (IRE1)-mediated bZIP60 mRNA splicing are activated in plants. A drought-induced gene, encoding the ortholog of AtbZIP60, was identified in the resurrection plant Boea hygrometrica, termed BhbZIP60. In response to ER stress and dehydration, BhbZIP60 mRNA can be spliced to create a frame shift in the C terminus by the excision of 23b segment in a manner of its ortholog in other plants, thus translocating to the nucleus instead of the cytoplasm. The splicing-activated BhbZIP60 (BhbZIP60S) could function in the same way as its Arabidopsis ortholog by restoring the molecular phenotype of the mutant atbzip60. When overexpressed in Arabidopsis, BhbZIP60S provided transgenic plants with enhanced tolerance to drought, tunicamycin and mannitol stresses with upregulation of the expressions of ER quality control (QC) genes (BiP2, BiP3, CNX1, and sPDI) and abscisic acid (ABA) responsive genes (RD29A, RAB18, and RD17). Furthermore, in the yeast one-hybrid system, BhbZIP60S was capable of interacting with ER stress responsive elements (ERSE and ERSE-II) that exist in the promoters of known ER-QC genes, but not binding to ABA responsive cis-elements (ABREs). Our results demonstrated that drought-induced BhbZIP60 may have a function in drought tolerance via the splicing-activated BhbZIP60S to mediate ER-QC by direct binding to the promoters of ER-QC genes. This study evidently demonstrates the involvement of ER-QC in the drought tolerance of Arabidopsis and the desiccation tolerance of the resurrection plant B. hygrometrica.

Timeline

Login to access the full chart related to this output.

If you don’t have an account, click here to discover Explorer

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
As of 1 July 2024, you may notice a temporary increase in the numbers of X profiles with Unknown location. Click here to learn more.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 36 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 36 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 7 19%
Student > Master 6 17%
Student > Ph. D. Student 4 11%
Student > Postgraduate 3 8%
Lecturer 3 8%
Other 4 11%
Unknown 9 25%
Readers by discipline Count As %
Agricultural and Biological Sciences 14 39%
Biochemistry, Genetics and Molecular Biology 8 22%
Unspecified 1 3%
Arts and Humanities 1 3%
Medicine and Dentistry 1 3%
Other 0 0%
Unknown 11 31%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 02 April 2017.
All research outputs
#20,412,387
of 22,962,258 outputs
Outputs from Frontiers in Plant Science
#16,284
of 20,389 outputs
Outputs of similar age
#271,603
of 311,653 outputs
Outputs of similar age from Frontiers in Plant Science
#391
of 503 outputs
Altmetric has tracked 22,962,258 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 20,389 research outputs from this source. They receive a mean Attention Score of 4.0. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 311,653 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 503 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.