↓ Skip to main content

Cartilage and Muscle Cell Fate and Origins during Lizard Tail Regeneration

Overview of attention for article published in Frontiers in Bioengineering and Biotechnology, November 2017
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (86th percentile)
  • High Attention Score compared to outputs of the same age and source (92nd percentile)

Mentioned by

news
1 news outlet
twitter
9 X users

Readers on

mendeley
61 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Cartilage and Muscle Cell Fate and Origins during Lizard Tail Regeneration
Published in
Frontiers in Bioengineering and Biotechnology, November 2017
DOI 10.3389/fbioe.2017.00070
Pubmed ID
Authors

Ricardo Londono, Wei Wenzhong, Bing Wang, Rocky S. Tuan, Thomas P. Lozito

Abstract

Human cartilage is an avascular tissue with limited capacity for repair. By contrast, certain lizards are capable of musculoskeletal tissue regeneration following tail loss throughout all stages of their lives. This extraordinary ability is the result of a complex process in which a blastema forms and gives rise to the tissues of the regenerate. Blastemal cells have been shown to originate either from dedifferentiated tissues or from existing progenitor cells in various species, but their origin has not been determined in lizards. As reptiles, lizards are the closest relatives to mammals with enhanced regenerative potential, and the origin of blastemal cells has important implications for the regenerative process. Hence, the aim of this study is to determine the cellular origin of regenerated cartilage and muscle tissues in reptiles using the mourning gecko lizard as the regenerative model. To trace the fate and differentiation potential of cartilage during tail regeneration, cartilage cells pre-labeled with the fluorescent tracer Dil were injected into lizard tails, and the contribution of cartilage cells to regenerated tail tissues was assessed by histologic examination at 7, 14, and 21 days post-tail amputation. The contribution of muscle cells to regenerated tail tissues was evaluated using muscle creatine kinase promoter-driven Cre recombinase in conjunction with the Cre-responsive green-to-red fluorescence shift construct CreStoplight. 21 days after amputation, tail tissues were analyzed by histology for red fluorescent protein (RFP)-positive cells. At 7 days post-amputation, Dil-labeled cartilage cells localized to the subapical space contributing to the blastema. At 14 and 21 days post-amputation, Dil-labeled cells remained in the subapical space and colocalized with Collagen type II (Col2) staining in the cartilage tube and myosin heavy chain (MHC) staining in regenerated muscle. Lineage tracing of myocytes showed colocalization of RFP with Col2 and MHC in differentiated tissues at 21 days post-amputation. This study demonstrates that differentiated cartilage cells contribute to both regenerated muscle and cartilage tissues following tail loss, and in turn, differentiated muscle cells contribute to both tissue types as well. These findings suggest that dedifferentiation and/or transdifferentiation are at least partially responsible for the regenerative outcome in the mourning gecko.

Timeline

Login to access the full chart related to this output.

If you don’t have an account, click here to discover Explorer

X Demographics

X Demographics

The data shown below were collected from the profiles of 9 X users who shared this research output. Click here to find out more about how the information was compiled.
As of 1 July 2024, you may notice a temporary increase in the numbers of X profiles with Unknown location. Click here to learn more.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 61 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 61 100%

Demographic breakdown

Readers by professional status Count As %
Student > Bachelor 12 20%
Other 6 10%
Student > Ph. D. Student 5 8%
Researcher 4 7%
Student > Master 4 7%
Other 6 10%
Unknown 24 39%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 13 21%
Agricultural and Biological Sciences 9 15%
Engineering 3 5%
Chemistry 2 3%
Materials Science 2 3%
Other 7 11%
Unknown 25 41%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 15. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 14 February 2022.
All research outputs
#2,259,904
of 24,479,790 outputs
Outputs from Frontiers in Bioengineering and Biotechnology
#268
of 7,879 outputs
Outputs of similar age
#44,225
of 334,275 outputs
Outputs of similar age from Frontiers in Bioengineering and Biotechnology
#3
of 26 outputs
Altmetric has tracked 24,479,790 research outputs across all sources so far. Compared to these this one has done particularly well and is in the 90th percentile: it's in the top 10% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 7,879 research outputs from this source. They receive a mean Attention Score of 3.6. This one has done particularly well, scoring higher than 96% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 334,275 tracked outputs that were published within six weeks on either side of this one in any source. This one has done well, scoring higher than 86% of its contemporaries.
We're also able to compare this research output to 26 others from the same source and published within six weeks on either side of this one. This one has done particularly well, scoring higher than 92% of its contemporaries.