↓ Skip to main content

Measurement and Finite Element Model Validation of Immature Porcine Brain–Skull Displacement during Rapid Sagittal Head Rotations

Overview of attention for article published in Frontiers in Bioengineering and Biotechnology, February 2018
Altmetric Badge

Mentioned by

twitter
2 X users

Citations

dimensions_citation
8 Dimensions

Readers on

mendeley
35 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Measurement and Finite Element Model Validation of Immature Porcine Brain–Skull Displacement during Rapid Sagittal Head Rotations
Published in
Frontiers in Bioengineering and Biotechnology, February 2018
DOI 10.3389/fbioe.2018.00016
Pubmed ID
Authors

Stephanie A. Pasquesi, Susan S. Margulies

Abstract

Computational models are valuable tools for studying tissue-level mechanisms of traumatic brain injury, but to produce more accurate estimates of tissue deformation, these models must be validated against experimental data. In this study, we present in situ measurements of brain-skull displacement in the neonatal piglet head (n = 3) at the sagittal midline during six rapid non-impact rotations (two rotations per specimen) with peak angular velocities averaging 51.7 ± 1.4 rad/s. Marks on the sagittally cut brain and skull/rigid potting surfaces were tracked, and peak values of relative brain-skull displacement were extracted and found to be significantly less than values extracted from a previous axial plane model. In a finite element model of the sagittally transected neonatal porcine head, the brain-skull boundary condition was matched to the measured physical experiment data. Despite smaller sagittal plane displacements at the brain-skull boundary, the corresponding finite element boundary condition optimized for sagittal plane rotations is far less stiff than its axial counterpart, likely due to the prominent role of the boundary geometry in restricting interface movement. Finally, bridging veins were included in the finite element model. Varying the bridging vein mechanical behavior over a previously reported range had no influence on the brain-skull boundary displacements. This direction-specific sagittal plane boundary condition can be employed in finite element models of rapid sagittal head rotations.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
As of 1 July 2024, you may notice a temporary increase in the numbers of X profiles with Unknown location. Click here to learn more.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 35 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 35 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 8 23%
Student > Ph. D. Student 7 20%
Student > Bachelor 5 14%
Professor 3 9%
Student > Master 2 6%
Other 3 9%
Unknown 7 20%
Readers by discipline Count As %
Engineering 11 31%
Neuroscience 5 14%
Medicine and Dentistry 4 11%
Agricultural and Biological Sciences 2 6%
Psychology 1 3%
Other 0 0%
Unknown 12 34%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 21 February 2018.
All research outputs
#18,587,406
of 23,023,224 outputs
Outputs from Frontiers in Bioengineering and Biotechnology
#3,444
of 6,720 outputs
Outputs of similar age
#257,279
of 331,231 outputs
Outputs of similar age from Frontiers in Bioengineering and Biotechnology
#30
of 43 outputs
Altmetric has tracked 23,023,224 research outputs across all sources so far. This one is in the 11th percentile – i.e., 11% of other outputs scored the same or lower than it.
So far Altmetric has tracked 6,720 research outputs from this source. They receive a mean Attention Score of 3.4. This one is in the 30th percentile – i.e., 30% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 331,231 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 11th percentile – i.e., 11% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 43 others from the same source and published within six weeks on either side of this one. This one is in the 2nd percentile – i.e., 2% of its contemporaries scored the same or lower than it.