↓ Skip to main content

Development of a Metabolite Sensor for High-Throughput Detection of Aldehydes in Escherichia Coli

Overview of attention for article published in Frontiers in Bioengineering and Biotechnology, August 2018
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
3 X users

Citations

dimensions_citation
22 Dimensions

Readers on

mendeley
63 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Development of a Metabolite Sensor for High-Throughput Detection of Aldehydes in Escherichia Coli
Published in
Frontiers in Bioengineering and Biotechnology, August 2018
DOI 10.3389/fbioe.2018.00118
Pubmed ID
Authors

Cláudio R. Frazão, Victor Maton, Jean M. François, Thomas Walther

Abstract

We have developed a fluorescence-based metabolite sensor enabling in vivo detection of various aldehydes of biotechnological interest in Escherichia coli. YqhC is a transcriptional regulator that is known to be involved in the upregulation of the yqhD-dgkA operon in the presence of aldehydes. We took advantage of this property by constructing a bi-modular biosensor, in which a sensing module constitutively expresses yqhC while a reporter module drives the expression of the syfp2 reporter gene that is put under control of the yqhD promoter. The sensitivity of the sensor has been optimized by engineering the 5'-UTRs of both the sensing and the reporter modules resulting in a 70-fold gain of fluorescence in response to the model compound glycolaldehyde at 5 mM. The optimized sensor further responded to other aldehydes when supplemented to the cultivation medium at concentrations of 1-10 mM. We furthermore showed that this metabolite sensor was functional in vivo as it responded to the presence of glycoladehyde that is specifically produced upon induction of a synthetic xylulose-1-phosphate pathway expressed in E. coli. This bi-modular sensor can therefore be employed as an exquisite tool for FACS-based ultra-high-throughput screening of aldehyde (over) producing enzymes.

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
As of 1 July 2024, you may notice a temporary increase in the numbers of X profiles with Unknown location. Click here to learn more.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 63 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 63 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 14 22%
Student > Ph. D. Student 14 22%
Student > Master 7 11%
Student > Bachelor 6 10%
Student > Doctoral Student 3 5%
Other 4 6%
Unknown 15 24%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 19 30%
Agricultural and Biological Sciences 11 17%
Chemical Engineering 9 14%
Chemistry 4 6%
Engineering 3 5%
Other 1 2%
Unknown 16 25%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 24 August 2018.
All research outputs
#14,613,137
of 23,393,513 outputs
Outputs from Frontiers in Bioengineering and Biotechnology
#2,011
of 7,009 outputs
Outputs of similar age
#188,929
of 335,125 outputs
Outputs of similar age from Frontiers in Bioengineering and Biotechnology
#29
of 47 outputs
Altmetric has tracked 23,393,513 research outputs across all sources so far. This one is in the 35th percentile – i.e., 35% of other outputs scored the same or lower than it.
So far Altmetric has tracked 7,009 research outputs from this source. They receive a mean Attention Score of 3.6. This one has gotten more attention than average, scoring higher than 68% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 335,125 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 40th percentile – i.e., 40% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 47 others from the same source and published within six weeks on either side of this one. This one is in the 34th percentile – i.e., 34% of its contemporaries scored the same or lower than it.