↓ Skip to main content

Detecting Cancer Survival Related Gene Markers Based on Rectified Factor Network

Overview of attention for article published in Frontiers in Bioengineering and Biotechnology, April 2020
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Above-average Attention Score compared to outputs of the same age and source (52nd percentile)

Mentioned by

twitter
5 X users

Citations

dimensions_citation
2 Dimensions

Readers on

mendeley
3 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Detecting Cancer Survival Related Gene Markers Based on Rectified Factor Network
Published in
Frontiers in Bioengineering and Biotechnology, April 2020
DOI 10.3389/fbioe.2020.00349
Pubmed ID
Authors

Lingtao Su, Guixia Liu, Juexin Wang, Jianjiong Gao, Dong Xu

Abstract

Detecting gene sets that serve as biomarkers for differentiating patient survival groups may help diagnose diseases robustly and develop multi-gene targeted therapies. However, due to the exponential growth of search space imposed by gene combinations, the performance of existing methods is still far from satisfactory. In this study, we developed a new method called BISG (BIclustering based Survival-related Gene sets detection) based on a rectified factor network (RFN) model, which allows efficiently biclustering gene subsets. By correlating genes in each significant bicluster with patient survival outcomes using a log-rank test and multi-sampling strategy, multiple survival-related gene sets can be detected. We applied BISG on three different cancer types, and the resulting gene sets were tested as biomarkers for survival analyses. Secondly, we systematically analyzed 12 different cancer datasets. Our analysis shows that the genes in all the survival-related gene sets are mainly from five gene families: microRNA protein coding host genes, zinc fingers C2H2-type, solute carriers, CD (cluster of differentiation) molecules, and ankyrin repeat domain containing genes. Moreover, we found that they are mainly enriched in heme metabolism, apoptosis, hypoxia and inflammatory response-related pathways. We compared BISG with two other methods, GSAS and IPSOV. Results show that BISG can better differentiate patient survival groups in different datasets. The identified biomarkers suggested by our study provide useful hypotheses for further investigation. BISG is publicly available with open source at https://github.com/LingtaoSu/BISG.

X Demographics

X Demographics

The data shown below were collected from the profiles of 5 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 3 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 3 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 2 67%
Student > Ph. D. Student 1 33%
Other 1 33%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 1 33%
Medicine and Dentistry 1 33%
Unknown 1 33%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 20 May 2020.
All research outputs
#14,429,961
of 23,577,761 outputs
Outputs from Frontiers in Bioengineering and Biotechnology
#1,899
of 7,166 outputs
Outputs of similar age
#203,395
of 377,405 outputs
Outputs of similar age from Frontiers in Bioengineering and Biotechnology
#173
of 380 outputs
Altmetric has tracked 23,577,761 research outputs across all sources so far. This one is in the 37th percentile – i.e., 37% of other outputs scored the same or lower than it.
So far Altmetric has tracked 7,166 research outputs from this source. They receive a mean Attention Score of 3.5. This one has gotten more attention than average, scoring higher than 71% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 377,405 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 44th percentile – i.e., 44% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 380 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 52% of its contemporaries.