↓ Skip to main content

Efficacy of oxidized regenerated cellulose combined with fibrin glue in reducing pulmonary air leakage after segmentectomy in a porcine lung model

Overview of attention for article published in Frontiers in Bioengineering and Biotechnology, December 2022
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Good Attention Score compared to outputs of the same age and source (79th percentile)

Mentioned by

twitter
2 X users

Citations

dimensions_citation
3 Dimensions
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Efficacy of oxidized regenerated cellulose combined with fibrin glue in reducing pulmonary air leakage after segmentectomy in a porcine lung model
Published in
Frontiers in Bioengineering and Biotechnology, December 2022
DOI 10.3389/fbioe.2022.1052535
Pubmed ID
Authors

He Yang, Zhiqiang Dong, Hongya Wang, Zicheng Liu, Wenbo Sun, Kun Wang, Xinfeng Xu, Wei Wen, Jun Wang, Liang Chen, Quan Zhu

Abstract

Objectives: Pulmonary air leakage is a common complication following lung resection. We have designed a new method combining oxidized regenerated cellulose and fibrin glue to cover the intersegmental plane in clinical lung segmentectomy to prevent postoperative air leakage. In this study, an excised porcine lung segmentectomy model was created to validate its adhesive strength and effect on reducing air leakage. Methods: In the pre-experiment, six different larger lung segments were separated using electrocautery on the fresh isolated porcine lungs (n = 5 in each group). The air leakage degree and operation time of the lung segments were comprehensively evaluated to select the most suitable target segment for establishing the ex vivo porcine lung segmentectomy models. In the experiment, according to the different materials covered on the intersegmental plane, these models were randomly divided into four groups: group A used fibrin glue and oxidized regenerated cellulose (ORC) mesh (n = 20); group B used fibrin glue and polyglycolic acid (PGA) sheet (n = 20); group C used fibrin glue (n = 20); group D was the blank control group (n = 20). The minimum air leakage pressure (MALP) of the selected target segment in each group was measured using a stepwise increase of airway pressure, and histological assessment was performed on the sealed area samples from the four groups. Results: The operation time of the a segment of the right cranial lobe (R1a) was shorter than that of other segments (p < 0.05), and there was no significant difference in the air leakage pressures between the six isolated segments (p = 0.76); thus, R1a was chosen for segmentectomy. In addition, the MALP was significantly higher in group A (41.8 ± 4.5 cmH2O) than in groups C (28.1 ± 2.3 cmH2O) and D (17.3 ± 1.2 cmH2O) (both p < 0.001). The MALP of group B (69.5 ± 5.2 cmH2O) was significantly higher than that of group A (p < 0.001), whereas that of group C was significantly higher than that of group D (p < 0.001). Histological examination confirmed that the combined use of fibrin glue and ORC or PGA patch adhered more firmly to the intersegmental plane than that of fibrin glue alone, although some gaps could be seen between the fibrin glue and the surface of the lung segments in group C. Conclusion: The application of ORC combined with fibrin glue on the intersegmental plane has a good sealing performance in the ex vivo porcine lung segmentectomy model, suggesting that ORC may be an effective alternative material to replace PGA sheet to combine with fibrin glue for preventing air leakage after segmentectomy.

Timeline

Login to access the full chart related to this output.

If you don’t have an account, click here to discover Explorer

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
As of 1 July 2024, you may notice a temporary increase in the numbers of X profiles with Unknown location. Click here to learn more.
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 22 December 2022.
All research outputs
#15,219,039
of 23,393,453 outputs
Outputs from Frontiers in Bioengineering and Biotechnology
#2,279
of 7,015 outputs
Outputs of similar age
#218,952
of 441,435 outputs
Outputs of similar age from Frontiers in Bioengineering and Biotechnology
#85
of 544 outputs
Altmetric has tracked 23,393,453 research outputs across all sources so far. This one is in the 32nd percentile – i.e., 32% of other outputs scored the same or lower than it.
So far Altmetric has tracked 7,015 research outputs from this source. They receive a mean Attention Score of 3.6. This one has gotten more attention than average, scoring higher than 61% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 441,435 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 46th percentile – i.e., 46% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 544 others from the same source and published within six weeks on either side of this one. This one has done well, scoring higher than 79% of its contemporaries.