↓ Skip to main content

Thyroxine transfer from cerebrospinal fluid into choroid plexus and brain is affected by brefeldin A, low sodium, BCH, and phloretin, in ventriculo-cisternal perfused rabbits

Overview of attention for article published in Frontiers in Cell and Developmental Biology, September 2015
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
3 Dimensions

Readers on

mendeley
9 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Thyroxine transfer from cerebrospinal fluid into choroid plexus and brain is affected by brefeldin A, low sodium, BCH, and phloretin, in ventriculo-cisternal perfused rabbits
Published in
Frontiers in Cell and Developmental Biology, September 2015
DOI 10.3389/fcell.2015.00060
Pubmed ID
Authors

Kazem Zibara, Ali El-Zein, Wissam Joumaa, Mohammad El-Sayyad, Stefania Mondello, Nouhad Kassem

Abstract

Thyroxine (T4) hormone is synthesized by the thyroid gland and then released into the systemic circulation where it binds to a number of proteins. Dysfunction in T4 transport mechanisms has been demonstrated in multiple central nervous system (CNS) diseases including Alzheimer's disease. In the presence of different compounds that inhibit potential T4 transport mechanisms, this study investigated the transfer of T4 from cerebrospinal fluid (CSF) into Choroid Plexus (CP) and other brain tissues. The compounds used were brefeldin A, low sodium artificial CSF (aCSF), BCH, phloretin, and taurocholate (TA). Radiolabeled T4 ((125)I-T4) was perfused continuously into the CSF and was assessed in several brain compartments with reference molecule (14)C-mannitol and blue dextran, using the in vivo ventriculo-cisternal perfusion (V-C) technique in the rabbit. The aCSF containing the drug of interest was infused after 1 h of perfusion. Drugs were applied independently to the aCSF after 1 h of control perfusion. Of interest, in presence of low sodium or BCH, the percentage recovery of (125)I-T4, was increased compared to controls, with concomitant increase in T4 clearance. Conversely, brefeldin A, phloretin, and TA did not exert any significant effect on the recovery and clearance of (125)I-T4 assessed in aCSF. On the other hand, the uptake of (125)I-T4 into CP was raised by 18 fold compared to controls in the presence of brefeldin A. In addition, low sodium, BCH, or phloretin alone, enhanced the uptake of (125)I-T4 by almost 3-fold, whereas TA did not show any significant effect. Finally, the uptake and distribution of (125)I-T4 into other brain regions including ependymal region (ER) and caudate putamen (CAP) were significantly higher than in controls. Our study suggests the involvement of different mechanisms for the transfer of (125)I-T4 from CSF into CP and other brain regions. This transfer may implicate sodium-dependent mechanisms, amino acid "L" system, or organic anion transporting polypeptide (OATP).

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 9 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 9 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 2 22%
Student > Bachelor 1 11%
Student > Ph. D. Student 1 11%
Professor 1 11%
Professor > Associate Professor 1 11%
Other 1 11%
Unknown 2 22%
Readers by discipline Count As %
Agricultural and Biological Sciences 3 33%
Neuroscience 1 11%
Medicine and Dentistry 1 11%
Unknown 4 44%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 08 October 2015.
All research outputs
#18,427,608
of 22,829,083 outputs
Outputs from Frontiers in Cell and Developmental Biology
#4,923
of 9,007 outputs
Outputs of similar age
#197,335
of 274,379 outputs
Outputs of similar age from Frontiers in Cell and Developmental Biology
#17
of 22 outputs
Altmetric has tracked 22,829,083 research outputs across all sources so far. This one is in the 11th percentile – i.e., 11% of other outputs scored the same or lower than it.
So far Altmetric has tracked 9,007 research outputs from this source. They receive a mean Attention Score of 3.4. This one is in the 33rd percentile – i.e., 33% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 274,379 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 16th percentile – i.e., 16% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 22 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.