↓ Skip to main content

The Molecular Architecture of Cell Adhesion: Dynamic Remodeling Revealed by Videonanoscopy

Overview of attention for article published in Frontiers in Cell and Developmental Biology, May 2016
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Above-average Attention Score compared to outputs of the same age and source (54th percentile)

Mentioned by

twitter
5 X users

Citations

dimensions_citation
20 Dimensions

Readers on

mendeley
70 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
The Molecular Architecture of Cell Adhesion: Dynamic Remodeling Revealed by Videonanoscopy
Published in
Frontiers in Cell and Developmental Biology, May 2016
DOI 10.3389/fcell.2016.00036
Pubmed ID
Authors

Arnauld Sergé

Abstract

The plasma membrane delimits the cell, which is the basic unit of living organisms, and is also a privileged site for cell communication with the environment. Cell adhesion can occur through cell-cell and cell-matrix contacts. Adhesion proteins such as integrins and cadherins also constitute receptors for inside-out and outside-in signaling within proteolipidic platforms. Adhesion molecule targeting and stabilization relies on specific features such as preferential segregation by the sub-membrane cytoskeleton meshwork and within membrane proteolipidic microdomains. This review presents an overview of the recent insights brought by the latest developments in microscopy, to unravel the molecular remodeling occurring at cell contacts. The dynamic aspect of cell adhesion was recently highlighted by super-resolution videomicroscopy, also named videonanoscopy. By circumventing the diffraction limit of light, nanoscopy has allowed the monitoring of molecular localization and behavior at the single-molecule level, on fixed and living cells. Accessing molecular-resolution details such as quantitatively monitoring components entering and leaving cell contacts by lateral diffusion and reversible association has revealed an unexpected plasticity. Adhesion structures can be highly specialized, such as focal adhesion in motile cells, as well as immune and neuronal synapses. Spatiotemporal reorganization of adhesion molecules, receptors, and adaptors directly relates to structure/function modulation. Assembly of these supramolecular complexes is continuously balanced by dynamic events, remodeling adhesions on various timescales, notably by molecular conformation switches, lateral diffusion within the membrane and endo/exocytosis. Pathological alterations in cell adhesion are involved in cancer evolution, through cancer stem cell interaction with stromal niches, growth, extravasation, and metastasis.

X Demographics

X Demographics

The data shown below were collected from the profiles of 5 X users who shared this research output. Click here to find out more about how the information was compiled.
As of 1 July 2024, you may notice a temporary increase in the numbers of X profiles with Unknown location. Click here to learn more.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 70 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United Kingdom 1 1%
Finland 1 1%
Unknown 68 97%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 18 26%
Student > Master 9 13%
Researcher 8 11%
Student > Bachelor 6 9%
Student > Postgraduate 5 7%
Other 13 19%
Unknown 11 16%
Readers by discipline Count As %
Agricultural and Biological Sciences 20 29%
Biochemistry, Genetics and Molecular Biology 15 21%
Engineering 4 6%
Pharmacology, Toxicology and Pharmaceutical Science 3 4%
Medicine and Dentistry 3 4%
Other 11 16%
Unknown 14 20%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 23 May 2016.
All research outputs
#13,468,145
of 22,867,327 outputs
Outputs from Frontiers in Cell and Developmental Biology
#2,400
of 9,037 outputs
Outputs of similar age
#146,343
of 298,972 outputs
Outputs of similar age from Frontiers in Cell and Developmental Biology
#18
of 42 outputs
Altmetric has tracked 22,867,327 research outputs across all sources so far. This one is in the 39th percentile – i.e., 39% of other outputs scored the same or lower than it.
So far Altmetric has tracked 9,037 research outputs from this source. They receive a mean Attention Score of 3.4. This one has gotten more attention than average, scoring higher than 72% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 298,972 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 49th percentile – i.e., 49% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 42 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 54% of its contemporaries.