↓ Skip to main content

Diversity of Cnidarian Muscles: Function, Anatomy, Development and Regeneration

Overview of attention for article published in Frontiers in Cell and Developmental Biology, January 2017
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Above-average Attention Score compared to outputs of the same age and source (62nd percentile)

Mentioned by

twitter
4 X users

Citations

dimensions_citation
75 Dimensions

Readers on

mendeley
198 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Diversity of Cnidarian Muscles: Function, Anatomy, Development and Regeneration
Published in
Frontiers in Cell and Developmental Biology, January 2017
DOI 10.3389/fcell.2016.00157
Pubmed ID
Authors

Lucas Leclère, Eric Röttinger

Abstract

The ability to perform muscle contractions is one of the most important and distinctive features of eumetazoans. As the sister group to bilaterians, cnidarians (sea anemones, corals, jellyfish, and hydroids) hold an informative phylogenetic position for understanding muscle evolution. Here, we review current knowledge on muscle function, diversity, development, regeneration and evolution in cnidarians. Cnidarian muscles are involved in various activities, such as feeding, escape, locomotion and defense, in close association with the nervous system. This variety is reflected in the large diversity of muscle organizations found in Cnidaria. Smooth epithelial muscle is thought to be the most common type, and is inferred to be the ancestral muscle type for Cnidaria, while striated muscle fibers and non-epithelial myocytes would have been convergently acquired within Cnidaria. Current knowledge of cnidarian muscle development and its regeneration is limited. While orthologs of myogenic regulatory factors such as MyoD have yet to be found in cnidarian genomes, striated muscle formation potentially involves well-conserved myogenic genes, such as twist and mef2. Although satellite cells have yet to be identified in cnidarians, muscle plasticity (e.g., de- and re-differentiation, fiber repolarization) in a regenerative context and its potential role during regeneration has started to be addressed in a few cnidarian systems. The development of novel tools to study those organisms has created new opportunities to investigate in depth the development and regeneration of cnidarian muscle cells and how they contribute to the regenerative process.

Timeline

Login to access the full chart related to this output.

If you don’t have an account, click here to discover Explorer

X Demographics

X Demographics

The data shown below were collected from the profiles of 4 X users who shared this research output. Click here to find out more about how the information was compiled.
As of 1 July 2024, you may notice a temporary increase in the numbers of X profiles with Unknown location. Click here to learn more.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 198 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 198 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 37 19%
Researcher 26 13%
Student > Bachelor 26 13%
Student > Master 20 10%
Student > Doctoral Student 12 6%
Other 25 13%
Unknown 52 26%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 60 30%
Agricultural and Biological Sciences 48 24%
Environmental Science 6 3%
Neuroscience 5 3%
Earth and Planetary Sciences 4 2%
Other 18 9%
Unknown 57 29%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 29 May 2017.
All research outputs
#13,531,477
of 22,947,506 outputs
Outputs from Frontiers in Cell and Developmental Biology
#2,415
of 9,089 outputs
Outputs of similar age
#210,967
of 419,040 outputs
Outputs of similar age from Frontiers in Cell and Developmental Biology
#11
of 35 outputs
Altmetric has tracked 22,947,506 research outputs across all sources so far. This one is in the 39th percentile – i.e., 39% of other outputs scored the same or lower than it.
So far Altmetric has tracked 9,089 research outputs from this source. They receive a mean Attention Score of 3.4. This one has gotten more attention than average, scoring higher than 72% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 419,040 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 48th percentile – i.e., 48% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 35 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 62% of its contemporaries.