↓ Skip to main content

The Interplay of Host Autophagy and Eukaryotic Pathogens

Overview of attention for article published in Frontiers in Cell and Developmental Biology, September 2018
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (83rd percentile)
  • High Attention Score compared to outputs of the same age and source (85th percentile)

Mentioned by

twitter
19 X users

Citations

dimensions_citation
40 Dimensions

Readers on

mendeley
82 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
The Interplay of Host Autophagy and Eukaryotic Pathogens
Published in
Frontiers in Cell and Developmental Biology, September 2018
DOI 10.3389/fcell.2018.00118
Pubmed ID
Authors

Robert J. Evans, Varadharajan Sundaramurthy, Eva-Maria Frickel

Abstract

For intracellular pathogens, host cells provide a replicative niche, but are also armed with innate defense mechanisms to combat the intruder. Co-evolution of host and pathogens has produced a complex interplay of host-pathogen interactions during infection, with autophagy emerging as a key player in the recent years. Host autophagy as a degradative process is a significant hindrance to intracellular growth of the pathogens, but also can be subverted by the pathogens to provide support such as nutrients. While the role of host cell autophagy in the pathogenesis mechanisms of several bacterial and viral pathogens have been extensively studied, less is known for eukaryotic pathogens. In this review, we focus on the interplay of host autophagy with the eukaryotic pathogens Plasmodium spp, Toxoplasma, Leishmania spp and the fungal pathogens Candida albicans, Aspergillus fumigatus and Cryptococcus neoformans. The differences between these eukaryotic pathogens in terms of the host cell types they infect, infective strategies and the host responses required to defend against them provide an interesting insight into how they respond to and interact with host cell autophagy. Due to the ability to infect multiple host species and cell types during the course of their usually complex lifestyles, autophagy plays divergent roles even for the same pathogen. The scenario is further compounded since many of the eukaryotic pathogens have their own sets of either complete or partial autophagy machinery. Eukaryotic pathogen-autophagy interplay is thus a complex relationship with many novel insights for the basic understanding of autophagy, and potential for clinical relevance.

X Demographics

X Demographics

The data shown below were collected from the profiles of 19 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 82 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 82 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 17 21%
Researcher 14 17%
Student > Bachelor 12 15%
Student > Master 10 12%
Student > Doctoral Student 3 4%
Other 12 15%
Unknown 14 17%
Readers by discipline Count As %
Immunology and Microbiology 20 24%
Biochemistry, Genetics and Molecular Biology 19 23%
Agricultural and Biological Sciences 13 16%
Medicine and Dentistry 4 5%
Computer Science 2 2%
Other 8 10%
Unknown 16 20%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 12. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 04 October 2018.
All research outputs
#2,675,089
of 23,103,436 outputs
Outputs from Frontiers in Cell and Developmental Biology
#477
of 9,165 outputs
Outputs of similar age
#56,958
of 337,955 outputs
Outputs of similar age from Frontiers in Cell and Developmental Biology
#9
of 62 outputs
Altmetric has tracked 23,103,436 research outputs across all sources so far. Compared to these this one has done well and is in the 88th percentile: it's in the top 25% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 9,165 research outputs from this source. They receive a mean Attention Score of 3.4. This one has done particularly well, scoring higher than 94% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 337,955 tracked outputs that were published within six weeks on either side of this one in any source. This one has done well, scoring higher than 83% of its contemporaries.
We're also able to compare this research output to 62 others from the same source and published within six weeks on either side of this one. This one has done well, scoring higher than 85% of its contemporaries.