↓ Skip to main content

Meclozine Attenuates the MARK Pathway in Mammalian Chondrocytes and Ameliorates FGF2-Induced Bone Hyperossification in Larval Zebrafish

Overview of attention for article published in Frontiers in Cell and Developmental Biology, January 2022
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
2 X users

Citations

dimensions_citation
5 Dimensions

Readers on

mendeley
6 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Meclozine Attenuates the MARK Pathway in Mammalian Chondrocytes and Ameliorates FGF2-Induced Bone Hyperossification in Larval Zebrafish
Published in
Frontiers in Cell and Developmental Biology, January 2022
DOI 10.3389/fcell.2021.694018
Pubmed ID
Authors

Genta Takemoto, Masaki Matsushita, Takaaki Okamoto, Toshinari Ito, Yuki Matsuura, Chieko Takashima, Toyofumi Fengshi Chen-Yoshikawa, Hiromichi Ebi, Shiro Imagama, Hiroshi Kitoh, Kinji Ohno, Yasuyuki Hosono

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
As of 1 July 2024, you may notice a temporary increase in the numbers of X profiles with Unknown location. Click here to learn more.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 6 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 6 100%

Demographic breakdown

Readers by professional status Count As %
Unspecified 1 17%
Student > Master 1 17%
Unknown 4 67%
Readers by discipline Count As %
Unspecified 1 17%
Chemistry 1 17%
Unknown 4 67%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 11 February 2022.
All research outputs
#18,649,291
of 23,103,436 outputs
Outputs from Frontiers in Cell and Developmental Biology
#5,047
of 9,165 outputs
Outputs of similar age
#361,967
of 502,132 outputs
Outputs of similar age from Frontiers in Cell and Developmental Biology
#492
of 943 outputs
Altmetric has tracked 23,103,436 research outputs across all sources so far. This one is in the 11th percentile – i.e., 11% of other outputs scored the same or lower than it.
So far Altmetric has tracked 9,165 research outputs from this source. They receive a mean Attention Score of 3.4. This one is in the 32nd percentile – i.e., 32% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 502,132 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 17th percentile – i.e., 17% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 943 others from the same source and published within six weeks on either side of this one. This one is in the 34th percentile – i.e., 34% of its contemporaries scored the same or lower than it.