↓ Skip to main content

ANSID: A Solid-Phase Proteomic Approach for Identification and Relative Quantification of Aromatic Nitration Sites

Overview of attention for article published in Frontiers in Chemistry, January 2016
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Above-average Attention Score compared to outputs of the same age and source (58th percentile)

Mentioned by

twitter
3 X users

Citations

dimensions_citation
15 Dimensions

Readers on

mendeley
16 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
ANSID: A Solid-Phase Proteomic Approach for Identification and Relative Quantification of Aromatic Nitration Sites
Published in
Frontiers in Chemistry, January 2016
DOI 10.3389/fchem.2015.00070
Pubmed ID
Authors

Tal Nuriel, Julia Whitehouse, Yuliang Ma, Emily J. Mercer, Neil Brown, Steven S. Gross

Abstract

Nitration of tyrosine and other aromatic amino acid residues in proteins occurs in the setting of inflammatory, neurodegenerative, and cardiovascular diseases-importantly, this modification has been implicated in the pathogenesis of diverse diseases and the physiological process of aging. To understand the biological consequences of aromatic nitration in both health and disease, it is critical to molecularly identify the proteins that undergo nitration, specify their cognate modification sites and quantify their extent of nitration. To date, unbiased identification of nitrated proteins has often involved painstaking 2D-gel electrophoresis followed by Western Blotting with an anti-nitrotyrosine antibody for detection. Apart from being relatively slow and laborious, this method suffers from limited coverage, the potential for false-positive identifications, and failure to reveal specific amino acid modification sites. To overcome these shortcomings, we have developed a solid-phase, chemical-capture approach for unbiased and high-throughput discovery of nitrotyrosine and nitrotryptophan sites in proteins. Utilizing this method, we have successfully identified several endogenously nitrated proteins in rat brain and a total of 244 nitrated peptides from 145 proteins following in vitro exposure of rat brain homogenates to the nitrating agent peroxynitrite (1 mM). As expected, Tyr residues constituted the great majority of peroxynitrite-mediated protein nitration sites; however, we were surprised to discover several brain proteins that contain nitrated Trp residues. By incorporating a stable-isotope labeling step, this new Aromatic Nitration Site IDentification (ANSID) method was also adapted for relative quantification of nitration site abundances in proteins. Application of the ANSID method offers great potential to advance our understanding of the role of protein nitration in disease pathogenesis and normal physiology.

Timeline

Login to access the full chart related to this output.

If you don’t have an account, click here to discover Explorer

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
As of 1 July 2024, you may notice a temporary increase in the numbers of X profiles with Unknown location. Click here to learn more.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 16 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 16 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 4 25%
Other 2 13%
Student > Master 2 13%
Professor 1 6%
Student > Bachelor 1 6%
Other 1 6%
Unknown 5 31%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 4 25%
Pharmacology, Toxicology and Pharmaceutical Science 2 13%
Chemistry 2 13%
Agricultural and Biological Sciences 1 6%
Neuroscience 1 6%
Other 1 6%
Unknown 5 31%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 07 January 2016.
All research outputs
#15,983,535
of 25,374,647 outputs
Outputs from Frontiers in Chemistry
#1,185
of 6,765 outputs
Outputs of similar age
#216,848
of 400,078 outputs
Outputs of similar age from Frontiers in Chemistry
#5
of 12 outputs
Altmetric has tracked 25,374,647 research outputs across all sources so far. This one is in the 36th percentile – i.e., 36% of other outputs scored the same or lower than it.
So far Altmetric has tracked 6,765 research outputs from this source. They receive a mean Attention Score of 2.4. This one has done well, scoring higher than 81% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 400,078 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 45th percentile – i.e., 45% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 12 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 58% of its contemporaries.