↓ Skip to main content

Effects of Changing pH, Incubation Time, and As(V) Competition, on F− Retention on Soils, Natural Adsorbents, By-Products, and Waste Materials

Overview of attention for article published in Frontiers in Chemistry, March 2018
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Above-average Attention Score compared to outputs of the same age and source (63rd percentile)

Mentioned by

twitter
2 X users

Citations

dimensions_citation
5 Dimensions

Readers on

mendeley
13 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Effects of Changing pH, Incubation Time, and As(V) Competition, on F− Retention on Soils, Natural Adsorbents, By-Products, and Waste Materials
Published in
Frontiers in Chemistry, March 2018
DOI 10.3389/fchem.2018.00051
Pubmed ID
Authors

Ana Quintáns-Fondo, Vanesa Santás-Miguel, Juan C. Nóvoa-Muñoz, Manuel Arias-Estévez, María J. Fernández-Sanjurjo, Esperanza Álvarez-Rodríguez, Avelino Núñez-Delgado

Abstract

The purpose of this work was to elucidate the repercussion of changing pH, incubation time and As(V) competition on fluoride (F-) sorption on forest and vineyard soil samples, pyritic, and granitic materials, as well as on the by-products pine sawdust, oak wood ash, mussel shell ash, fine and coarse mussel shell, and slate processing waste fines. To reach this end, the methodological approach was based on batch-type experiments. The results indicate that, for most materials, F- sorption was very high at the start, but was clearly diminished when the pH value increased. However, oak wood ash and shell ash showed high F- sorption even at alkaline pH, and pine sawdust showed low F- sorption for any pH value. Specifically, F- sorption was close to 100% for both ashes at pH < 6, and around 70% at pH 10, while for forest soil it was close to 90% at pH < 2, and around 60% at pH values near 8. Regarding the effect of incubation time on F- sorption, it was very low for both soils, pyritic material, granitic material, and both kinds of ashes, as all of them showed very rapid F- sorption from the start, with differences being lesser than 10% between sorption at 30 min and 1 month of incubation. However, sawdust and slate fines sorbed 20% of added F- in 30 min, remaining constant up to 12 h, and doubling after 30 days. And finally, mussel shell sorbed 20% at 30 min, increasing to close to 60% when incubation time was 30 days. This means that some of the materials showed a first sorption phase characterized by rapid F- sorption, and a slower sorption in a second phase. As regards the effect of the presence of As(V) on F- sorption, it was almost negligible, indicating the absence of competition for sorption sites. In view of that all, these results could aid to appropriately manage soils and by-products when focusing on F- removal, in circumstances where pH value changes, contact time vary from hours to days, and potential competition between F- and As(V) could take place.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
As of 1 July 2024, you may notice a temporary increase in the numbers of X profiles with Unknown location. Click here to learn more.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 13 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 13 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 3 23%
Other 2 15%
Student > Doctoral Student 2 15%
Professor 2 15%
Student > Ph. D. Student 2 15%
Other 2 15%
Readers by discipline Count As %
Environmental Science 4 31%
Agricultural and Biological Sciences 3 23%
Unspecified 2 15%
Earth and Planetary Sciences 1 8%
Chemistry 1 8%
Other 0 0%
Unknown 2 15%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 23 March 2018.
All research outputs
#14,968,843
of 23,025,074 outputs
Outputs from Frontiers in Chemistry
#1,201
of 6,010 outputs
Outputs of similar age
#201,041
of 331,974 outputs
Outputs of similar age from Frontiers in Chemistry
#30
of 120 outputs
Altmetric has tracked 23,025,074 research outputs across all sources so far. This one is in the 32nd percentile – i.e., 32% of other outputs scored the same or lower than it.
So far Altmetric has tracked 6,010 research outputs from this source. They receive a mean Attention Score of 2.0. This one has gotten more attention than average, scoring higher than 74% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 331,974 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 36th percentile – i.e., 36% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 120 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 63% of its contemporaries.