↓ Skip to main content

Carbon Cloth Supported Nano-Mg(OH)2 for the Enrichment and Recovery of Rare Earth Element Eu(III) From Aqueous Solution

Overview of attention for article published in Frontiers in Chemistry, April 2018
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
9 Dimensions

Readers on

mendeley
13 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Carbon Cloth Supported Nano-Mg(OH)2 for the Enrichment and Recovery of Rare Earth Element Eu(III) From Aqueous Solution
Published in
Frontiers in Chemistry, April 2018
DOI 10.3389/fchem.2018.00118
Pubmed ID
Authors

Yinong Li, Chen Tian, Weizhen Liu, Si Xu, Yunyun Xu, Rongxin Cui, Zhang Lin

Abstract

Nano-Mg(OH)2 is attracting great attention as adsorbent for pre-concentration and recovery of rare earth elements (REEs) from low-concentration solution, due to its superior removal efficiency for REEs and environmental friendliness. However, the nanoparticles also cause some severe problems during application, including aggregation, blockage in fixed-bed column, as well as the difficulties in separation and reuse. Herein, in order to avoid the mentioned problems, a carbon cloth (CC) supported nano-Mg(OH)2 (nano-Mg(OH)2@CC) was synthesized by electrodeposition. The X-ray diffraction and scanning electron microscopy analysis demonstrated that the interlaced nano-sheet of Mg(OH)2 grew firmly and uniformly on the surface of carbon cloth fibers. Batch adsorption experiments of Eu(III) indicated that the nano-Mg(OH)2@CC composite maintained the excellent adsorption performance of nano-Mg(OH)2 toward Eu(III). After adsorption, the Eu containing composite was calcined under nitrogen atmosphere. The content of Eu2O3 in the calcined material was as high as 99.66%. Fixed-bed column experiments indicated that no blockage for Mg(OH)2@CC composite was observed during the treatment, while the complete blockage of occurred to nano-Mg(OH)2 at an effluent volume of 240 mL. Moreover, the removal efficiency of Mg(OH)2@CC was still higher than 90% until 4,200 mL of effluent volume. This work provides a promising method for feasible application of nanoadsorbents in fixed-bed process to recycle low-concentration REEs from wastewater.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
As of 1 July 2024, you may notice a temporary increase in the numbers of X profiles with Unknown location. Click here to learn more.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 13 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 13 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 2 15%
Researcher 2 15%
Student > Bachelor 1 8%
Student > Master 1 8%
Lecturer > Senior Lecturer 1 8%
Other 0 0%
Unknown 6 46%
Readers by discipline Count As %
Materials Science 4 31%
Chemistry 3 23%
Environmental Science 1 8%
Unknown 5 38%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 18 April 2018.
All research outputs
#20,481,952
of 23,043,346 outputs
Outputs from Frontiers in Chemistry
#2,936
of 6,018 outputs
Outputs of similar age
#288,379
of 327,287 outputs
Outputs of similar age from Frontiers in Chemistry
#63
of 146 outputs
Altmetric has tracked 23,043,346 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 6,018 research outputs from this source. They receive a mean Attention Score of 2.0. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 327,287 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 146 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.