↓ Skip to main content

How to Achieve Better Results Using PASS-Based Virtual Screening: Case Study for Kinase Inhibitors

Overview of attention for article published in Frontiers in Chemistry, April 2018
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
29 Dimensions

Readers on

mendeley
51 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
How to Achieve Better Results Using PASS-Based Virtual Screening: Case Study for Kinase Inhibitors
Published in
Frontiers in Chemistry, April 2018
DOI 10.3389/fchem.2018.00133
Pubmed ID
Authors

Pavel V. Pogodin, Alexey A. Lagunin, Anastasia V. Rudik, Dmitry A. Filimonov, Dmitry S. Druzhilovskiy, Mark C. Nicklaus, Vladimir V. Poroikov

Abstract

Discovery of new pharmaceutical substances is currently boosted by the possibility of utilization of the Synthetically Accessible Virtual Inventory (SAVI) library, which includes about 283 million molecules, each annotated with a proposed synthetic one-step route from commercially available starting materials. The SAVI database is well-suited for ligand-based methods of virtual screening to select molecules for experimental testing. In this study, we compare the performance of three approaches for the analysis of structure-activity relationships that differ in their criteria for selecting of "active" and "inactive" compounds included in the training sets. PASS (Prediction of Activity Spectra for Substances), which is based on a modified Naïve Bayes algorithm, was applied since it had been shown to be robust and to provide good predictions of many biological activities based on just the structural formula of a compound even if the information in the training set is incomplete. We used different subsets of kinase inhibitors for this case study because many data are currently available on this important class of drug-like molecules. Based on the subsets of kinase inhibitors extracted from the ChEMBL 20 database we performed the PASS training, and then applied the model to ChEMBL 23 compounds not yet present in ChEMBL 20 to identify novel kinase inhibitors. As one may expect, the best prediction accuracy was obtained if only the experimentally confirmed active and inactive compounds for distinct kinases in the training procedure were used. However, for some kinases, reasonable results were obtained even if we used merged training sets, in which we designated as inactives the compounds not tested against the particular kinase. Thus, depending on the availability of data for a particular biological activity, one may choose the first or the second approach for creating ligand-based computational tools to achieve the best possible results in virtual screening.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
As of 1 July 2024, you may notice a temporary increase in the numbers of X profiles with Unknown location. Click here to learn more.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 51 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 51 100%

Demographic breakdown

Readers by professional status Count As %
Student > Master 7 14%
Researcher 7 14%
Student > Bachelor 3 6%
Student > Ph. D. Student 3 6%
Lecturer 2 4%
Other 6 12%
Unknown 23 45%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 7 14%
Chemistry 6 12%
Pharmacology, Toxicology and Pharmaceutical Science 3 6%
Agricultural and Biological Sciences 3 6%
Computer Science 1 2%
Other 3 6%
Unknown 28 55%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 26 April 2018.
All research outputs
#20,483,282
of 23,045,021 outputs
Outputs from Frontiers in Chemistry
#2,936
of 6,018 outputs
Outputs of similar age
#287,649
of 326,650 outputs
Outputs of similar age from Frontiers in Chemistry
#65
of 151 outputs
Altmetric has tracked 23,045,021 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 6,018 research outputs from this source. They receive a mean Attention Score of 2.0. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 326,650 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 151 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.