↓ Skip to main content

Exploring the Structural Diversity in Inhibitors of α-Synuclein Amyloidogenic Folding, Aggregation, and Neurotoxicity

Overview of attention for article published in Frontiers in Chemistry, May 2018
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (82nd percentile)
  • High Attention Score compared to outputs of the same age and source (95th percentile)

Mentioned by

news
1 news outlet
twitter
4 X users

Readers on

mendeley
60 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Exploring the Structural Diversity in Inhibitors of α-Synuclein Amyloidogenic Folding, Aggregation, and Neurotoxicity
Published in
Frontiers in Chemistry, May 2018
DOI 10.3389/fchem.2018.00181
Pubmed ID
Authors

Sukanya Das, Tara L. Pukala, Scott D. Smid

Abstract

Aggregation of α-Synuclein (αS) protein to amyloid fibrils is a neuropathological hallmark of Parkinson's disease (PD). Growing evidence suggests that extracellular αS aggregation plays a pivotal role in neurodegeneration found in PD in addition to the intracellular αS aggregates in Lewy bodies (LB). Here, we identified and compared a diverse set of molecules capable of mitigating protein aggregation and exogenous toxicity of αSA53T, a more aggregation-prone αS mutant found in familial PD. For the first time, we investigated the αS anti-amyloid activity of semi-synthetic flavonoid 2', 3', 4' trihydroxyflavone or 2-D08, which was compared with natural flavones myricetin and transilitin, as well as such structurally diverse polyphenols as honokiol and punicalagin. Additionally, two novel synthetic compounds with a dibenzyl imidazolidine scaffold, Compound 1 and Compound 2, were also investigated as they exhibited favorable binding with αSA53T. All seven compounds inhibited αSA53T aggregation as demonstrated by Thioflavin T fluorescence assays, with modified fibril morphology observed by transmission electron microscopy. Ion mobility-mass spectrometry (IM-MS) was used to monitor the structural conversion of native αSA53T into amyloidogenic conformations and all seven compounds preserved the native unfolded conformations of αSA53T following 48 h incubation. The presence of each test compound in a 1:2 molar ratio was also shown to inhibit the neurotoxicity of preincubated αSA53T using phaeochromocytoma (PC12) cell viability assays. Among the seven tested compounds 2-D08, honokiol, and the synthetic Compound 2 demonstrated the highest inhibition of aggregation, coupled with neuroprotection from preincubated αSA53T in vitro. Molecular docking predicted that all compounds bound near the lysine-rich region of the N-terminus of αSA53T, where the flavonoids and honokiol predominantly interacted with Lys 23. Overall, these findings highlight that (i) restricted vicinal trihydroxylation in the flavone B-ring is more effective in stabilizing the native αS conformations, thus blocking amyloidogenic aggregation, than dihydroxylation aggregation in both A and B-ring, and (ii) honokiol, punicalagin, and the synthetic imidazolidine Compound 2 also inhibit αS amyloidogenic aggregation by stabilizing its native conformations. This diverse set of molecules acting on a singular pathological target with predicted binding to αSA53T in the folding-prone N-terminal region may contribute toward novel drug-design for PD.

Timeline

Login to access the full chart related to this output.

If you don’t have an account, click here to discover Explorer

X Demographics

X Demographics

The data shown below were collected from the profiles of 4 X users who shared this research output. Click here to find out more about how the information was compiled.
As of 1 July 2024, you may notice a temporary increase in the numbers of X profiles with Unknown location. Click here to learn more.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 60 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 60 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 14 23%
Researcher 9 15%
Student > Doctoral Student 5 8%
Professor > Associate Professor 3 5%
Student > Master 3 5%
Other 4 7%
Unknown 22 37%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 12 20%
Chemistry 11 18%
Neuroscience 3 5%
Pharmacology, Toxicology and Pharmaceutical Science 2 3%
Unspecified 2 3%
Other 7 12%
Unknown 23 38%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 12. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 02 July 2018.
All research outputs
#2,623,543
of 23,047,237 outputs
Outputs from Frontiers in Chemistry
#120
of 6,018 outputs
Outputs of similar age
#56,422
of 330,718 outputs
Outputs of similar age from Frontiers in Chemistry
#7
of 164 outputs
Altmetric has tracked 23,047,237 research outputs across all sources so far. Compared to these this one has done well and is in the 88th percentile: it's in the top 25% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 6,018 research outputs from this source. They receive a mean Attention Score of 2.0. This one has done particularly well, scoring higher than 98% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 330,718 tracked outputs that were published within six weeks on either side of this one in any source. This one has done well, scoring higher than 82% of its contemporaries.
We're also able to compare this research output to 164 others from the same source and published within six weeks on either side of this one. This one has done particularly well, scoring higher than 95% of its contemporaries.