↓ Skip to main content

Multisensor Systems by Electrochemical Nanowire Assembly for the Analysis of Aqueous Solutions

Overview of attention for article published in Frontiers in Chemistry, June 2018
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
1 X user

Citations

dimensions_citation
22 Dimensions

Readers on

mendeley
40 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Multisensor Systems by Electrochemical Nanowire Assembly for the Analysis of Aqueous Solutions
Published in
Frontiers in Chemistry, June 2018
DOI 10.3389/fchem.2018.00256
Pubmed ID
Authors

Konstantin G. Nikolaev, Yury E. Ermolenko, Andreas Offenhäusser, Sergey S. Ermakov, Yulia G. Mourzina

Abstract

The development of electrochemical multisensor systems is driven by the need for fast, miniature, inexpensive, analytical devices, and advanced interdisciplinary based on both chemometric and (nano)material approaches. A multicomponent analysis of complex mixtures in environmental and technological monitoring, biological samples, and cell culture requires chip-based multisensor systems with high-stability sensors. In this paper, we describe the development, characterization, and applications of chip-based nanoelectrochemical sensor arrays prepared by the directed electrochemical nanowire assembly (DENA) of noble metals and metal alloys to analyze aqueous solutions. A synergic action of the electrode transducer function and electrocatalytic activity of the nanostructured surface toward analytes is achieved in the assembled metal nanowire (NW) sensors. Various sensor nanomaterials (Pd, Ni, Au, and their multicomponent compositions) can be electrochemically assembled on a single chip without employing multiple cycles of photolithography process to realize multi-analyte sensing applications as well as spatial resolution of sensor analysis by this single-chip multisensor system. For multi-analyte electrochemical sensing, individual amperometric signals of two or more nanowires can be acquired, making use of the specific electrocatalytic surface properties of the individual nanowire sensors of the array toward analytes. To demonstrate the application of a new electrochemical multisensor platform, Pd-Au, Pd-Ni, Pd, and Au NW electrode arrays on a single chip were employed for the non-enzymatic analysis of hydrogen peroxide, glucose, and ethanol. The analytes are determined at low absolute values of the detection potentials with linear concentration ranges of 1.0 × 10-6 - 1.0 × 10-3 M (H2O2), 1.5 × 10-7 - 2.0 × 10-3 M (glucose), and 0.7 × 10-3 - 3.0 × 10-2 M (ethanol), detection limits of 2 × 10-7 M (H2O2), 4 × 10-8 M (glucose), and 5.2 × 10-4 M (ethanol), and sensitivities of 18 μA M-1 (H2O2), 178 μA M-1 (glucose), and 28 μA M-1 (ethanol), respectively. The sensors demonstrate a high level of stability due to the non-enzymatic detection mode. Based on the DENA-assembled nanowire electrodes of a compositional diversity, we propose a novel single-chip electrochemical multisensor platform, which is promising for acquiring complex analytical signals for advanced data processing with chemometric techniques aimed at the development of electronic tongue-type multisensor systems for flexible multi-analyte monitoring and healthcare applications.

Timeline

Login to access the full chart related to this output.

If you don’t have an account, click here to discover Explorer

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
As of 1 July 2024, you may notice a temporary increase in the numbers of X profiles with Unknown location. Click here to learn more.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 40 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 40 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 9 23%
Student > Ph. D. Student 5 13%
Student > Master 3 8%
Student > Postgraduate 2 5%
Student > Doctoral Student 2 5%
Other 4 10%
Unknown 15 38%
Readers by discipline Count As %
Chemistry 8 20%
Chemical Engineering 3 8%
Biochemistry, Genetics and Molecular Biology 3 8%
Engineering 3 8%
Social Sciences 1 3%
Other 2 5%
Unknown 20 50%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 29 June 2018.
All research outputs
#18,640,437
of 23,092,602 outputs
Outputs from Frontiers in Chemistry
#2,238
of 6,038 outputs
Outputs of similar age
#254,373
of 329,246 outputs
Outputs of similar age from Frontiers in Chemistry
#69
of 171 outputs
Altmetric has tracked 23,092,602 research outputs across all sources so far. This one is in the 11th percentile – i.e., 11% of other outputs scored the same or lower than it.
So far Altmetric has tracked 6,038 research outputs from this source. They receive a mean Attention Score of 2.1. This one has gotten more attention than average, scoring higher than 51% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 329,246 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 12th percentile – i.e., 12% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 171 others from the same source and published within six weeks on either side of this one. This one is in the 39th percentile – i.e., 39% of its contemporaries scored the same or lower than it.