↓ Skip to main content

Photoinduced Oxygen Evolution Catalysis Promoted by Polyoxometalate Salts of Cationic Photosensitizers

Overview of attention for article published in Frontiers in Chemistry, August 2018
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
9 Dimensions

Readers on

mendeley
21 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Photoinduced Oxygen Evolution Catalysis Promoted by Polyoxometalate Salts of Cationic Photosensitizers
Published in
Frontiers in Chemistry, August 2018
DOI 10.3389/fchem.2018.00302
Pubmed ID
Authors

Joaquín Soriano-López, Fangyuan Song, Greta R. Patzke, J. R. Galan-Mascaros

Abstract

The insoluble salt Cs15K[Co9(H2O)6(OH)3(HPO4)2(PW9O34)3] (CsCo9) is tested as heterogeneous oxygen evolution catalyst in light-induced experiments, when combined with the homogeneous photosensitizer [Ru(bpy)3]2+ and the oxidant Na2S2O8 in neutral pH. Oxygen evolution occurs in parallel to a solid transformation. Post-catalytic essays indicate that the CsCo9 salt is transformed into the corresponding [Ru(bpy)3]2+ salt, upon cesium loss. Remarkably, analogous photoactivated oxygen evolution experiments starting with the [Ru(bpy)3](5+x)K(6-2x)[Co9(H2O)6(OH)3(HPO4)2(PW9O34)3]·(39+x)H2O (RuCo9) salt demonstrate much higher efficiency and kinetics. The origin of this improved performance is at the cation-anion, photosensitizer-catalyst pairing in the solid state. This is beneficial for the electron transfer event, and for the long-term stability of the photosensitizer. The latter was confirmed as the limiting process during these oxygen evolution reactions, with the polyoxometalate catalyst exhibiting robust performance in multiple cycles, upon addition of photosensitizer, and/or oxidant to the reaction mixture.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
As of 1 July 2024, you may notice a temporary increase in the numbers of X profiles with Unknown location. Click here to learn more.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 21 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 21 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 8 38%
Researcher 5 24%
Professor 2 10%
Student > Bachelor 2 10%
Student > Master 1 5%
Other 1 5%
Unknown 2 10%
Readers by discipline Count As %
Chemistry 14 67%
Economics, Econometrics and Finance 1 5%
Biochemistry, Genetics and Molecular Biology 1 5%
Physics and Astronomy 1 5%
Materials Science 1 5%
Other 0 0%
Unknown 3 14%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 14 August 2018.
All research outputs
#20,529,980
of 23,099,576 outputs
Outputs from Frontiers in Chemistry
#2,950
of 6,040 outputs
Outputs of similar age
#288,999
of 331,095 outputs
Outputs of similar age from Frontiers in Chemistry
#100
of 194 outputs
Altmetric has tracked 23,099,576 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 6,040 research outputs from this source. They receive a mean Attention Score of 2.0. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 331,095 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 194 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.