↓ Skip to main content

Ion-Exchange Chromatography Coupled With Dynamic Coating Capillary Electrophoresis for Simultaneous Determination of Tropomyosin and Arginine Kinase in Shellfish

Overview of attention for article published in Frontiers in Chemistry, July 2018
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
6 Dimensions

Readers on

mendeley
7 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Ion-Exchange Chromatography Coupled With Dynamic Coating Capillary Electrophoresis for Simultaneous Determination of Tropomyosin and Arginine Kinase in Shellfish
Published in
Frontiers in Chemistry, July 2018
DOI 10.3389/fchem.2018.00305
Pubmed ID
Authors

Linglin Fu, Jinru Zhou, Chong Wang, Xiaohui Li, Lei Zheng, Yanbo Wang

Abstract

Tropomyosin (TM) and arginine kinase (AK) are known as two major allergens in seafood. For the first time, we demonstrate a newly developed ion-exchange chromatography coupled with dynamic coating capillary electrophoresis (IEC-DCCE) method to simultaneously analyze the TM and AK in shellfish. First, we have optimized the procedure of IEC for simple enrichment of TM and AK crude extract. By using 30 mM borate-borax at pH 9.0 with 0.3% (v/v) Tween-20 as a dynamic coating modifier for capillary electrophoresis (CE) separation, the migration time, separation efficiency and electrophoretic resolution greatly improved. The limits of detection (LOD) were 1.2 μg mL-1 for AK and 1.1 μg mL-1 for TM (S/N = 3), and the limits of quantification (LOQ) were 4.0 μg mL-1 for AK and 3.7 μg mL-1 for TM (S/N = 10). The recovery of AK ranged from 91.5 to 106.1%, while that of TM ranged from 94.0 to 109.5%. We also found that only when the concentrations of AK and TM were above LOD reported here, these proteins can stimulate human mast cell (LAD2) degranulation. Finally, the use of IEC-DCCE to analyze fresh shellfish samples highlights the applicability of this method for the simultaneous detection of these allergens in complex food systems.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
As of 1 July 2024, you may notice a temporary increase in the numbers of X profiles with Unknown location. Click here to learn more.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 7 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 7 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 1 14%
Student > Bachelor 1 14%
Student > Postgraduate 1 14%
Student > Master 1 14%
Unknown 3 43%
Readers by discipline Count As %
Agricultural and Biological Sciences 2 29%
Biochemistry, Genetics and Molecular Biology 1 14%
Veterinary Science and Veterinary Medicine 1 14%
Unknown 3 43%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 25 July 2018.
All research outputs
#20,527,576
of 23,096,849 outputs
Outputs from Frontiers in Chemistry
#2,950
of 6,040 outputs
Outputs of similar age
#288,654
of 330,302 outputs
Outputs of similar age from Frontiers in Chemistry
#113
of 181 outputs
Altmetric has tracked 23,096,849 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 6,040 research outputs from this source. They receive a mean Attention Score of 2.0. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 330,302 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 181 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.