↓ Skip to main content

Investigation of Atrazine Sorption to Biochar With Titration Calorimetry and Flow-Through Analysis: Implications for Design of Pollution-Control Structures

Overview of attention for article published in Frontiers in Chemistry, July 2018
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
21 Dimensions

Readers on

mendeley
31 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Investigation of Atrazine Sorption to Biochar With Titration Calorimetry and Flow-Through Analysis: Implications for Design of Pollution-Control Structures
Published in
Frontiers in Chemistry, July 2018
DOI 10.3389/fchem.2018.00307
Pubmed ID
Authors

Chad J. Penn, Javier M. Gonzalez, Isis Chagas

Abstract

Atrazine is one of the most common broad-leaf herbicides used in the world. However, due to extensive use for many years, atrazine often appears in surface and groundwater. Atrazine transport is inhibited by degradation or sorption to soil components, especially organic matter. Biochar is a charcoal-like material produced from pyrolysis of biomass. Due to the amount and type of functional groups found on biochar, this product has shown potential for sorption of atrazine from solution. There is an interest in developing best management practices utilizing biochar to filter atrazine from non-point drainage with pollution-control structures such as blind inlets. The objective of this study was to explore the kinetics and thermodynamics of atrazine sorption to biochar using two different approaches: flow-through sorption cells and isothermal titration calorimetry (ITC). Twenty-five milligrams of an oak (Quercus spp.)-derived biochar was suspended in water and titrated 25 times (0.01 mL per titration) with atrazine at three different concentrations, and by a single titration (0.25 mL), with heat of reaction directly measured with ITC. A benchtop atrazine sorption study that simulated the titration experiment was also conducted. A continuous flow-through system was used to quantify the impact of contact time on atrazine sorption to biochar. Atrazine sorption to biochar displayed both exothermic and endothermic signals within each titration, although the net reaction was exothermic and proportional to the degree of sorption. Net enthalpy was -4,231 ± 130 kJ mole-1 atrazine sorbed. The existence of both exotherms and endotherms within a single titration, plus observation of an initial fast reaction phase from 0 to 300 s followed by a slower phase, suggested multiple sorption mechanisms to biochar. Results of flow-through tests supported kinetics observations, with the 300 s contact time removing much more atrazine compared to 45 s, while 600 s improved little compared to 300 s. Based on flow-through results, annual atrazine removal goal of 50%, and typical Midwestern U.S. tile drainage conditions, a pollution-control structure implementing this biochar sample would require 32 and 4 Mg for a design utilizing a contact time of 45 and 300 s, respectively. Future work is necessary for estimating degradation of atrazine sorbed to biochar.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
As of 1 July 2024, you may notice a temporary increase in the numbers of X profiles with Unknown location. Click here to learn more.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 31 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 31 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 7 23%
Student > Master 5 16%
Student > Bachelor 2 6%
Professor 2 6%
Other 1 3%
Other 2 6%
Unknown 12 39%
Readers by discipline Count As %
Agricultural and Biological Sciences 4 13%
Environmental Science 3 10%
Chemistry 3 10%
Biochemistry, Genetics and Molecular Biology 2 6%
Chemical Engineering 1 3%
Other 4 13%
Unknown 14 45%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 30 July 2018.
All research outputs
#20,529,173
of 23,098,660 outputs
Outputs from Frontiers in Chemistry
#2,950
of 6,040 outputs
Outputs of similar age
#288,006
of 329,967 outputs
Outputs of similar age from Frontiers in Chemistry
#116
of 189 outputs
Altmetric has tracked 23,098,660 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 6,040 research outputs from this source. They receive a mean Attention Score of 2.0. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 329,967 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 189 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.