↓ Skip to main content

Spectroscopic Studies as a Toolbox for Biophysical and Chemical Characterization of Lipid-Based Nanotherapeutics

Overview of attention for article published in Frontiers in Chemistry, July 2018
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Good Attention Score compared to outputs of the same age and source (68th percentile)

Mentioned by

twitter
4 X users

Citations

dimensions_citation
22 Dimensions

Readers on

mendeley
27 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Spectroscopic Studies as a Toolbox for Biophysical and Chemical Characterization of Lipid-Based Nanotherapeutics
Published in
Frontiers in Chemistry, July 2018
DOI 10.3389/fchem.2018.00323
Pubmed ID
Authors

Eduarda Fernandes, Telma B. Soares, Hugo Gonçalves, Marlene Lúcio

Abstract

The goal of this study is to provide tools to minimize trial-and-error in the development of novel lipid-based nanotherapeutics, in favor of a rational design process. For this purpose, we present case-study examples of biophysical assays that help addressing issues of lipid-based nanotherapeutics' profiling and assist in the design of lipid nanocarriers for therapeutic usage. The assays presented are rooted in spectroscopic methods (steady-state and time-resolved fluorescence; UV-Vis derivative spectroscopy; fluorescence anisotropy and fluorescence lifetime image microscopy) and allow accessing physical-chemical interactions between drugs and lipid nanocarriers, as well as studying interactions between lipid-based nanotherapeutics and membranes and/or proteins, as this is a key factor in predicting their therapeutic and off target effects. Derivative spectroscopy revealed Naproxen's high distribution (LogD ≈ 3) in different lipid-based nanocarriers (micelles and unilamellar or multilamellar vesicles) confirming the adequacy of such systems for encapsulating this anti-inflammatory drug. Fluorescence quenching studies revealed that the anti-inflammatory drugs Acemetacin and Indomethacin can reach an inner location at the lipid nanocarrier while being anchored with its carboxylic moiety at the polar headgroup. The least observed quenching effect suggested that Tolmetin is probably located at the polar headgroup region of the lipid nanocarriers and this superficial location may translate in a fast drug release from the nanocarriers. Fluorescent anisotropy measurements indicated that the drugs deeply buried within the lipid nanocarrier where the ones that had a greater fluidizing effect which can also translate in a faster drug release. The drug binding strength to serum albumin was also compared for a free drug (Clonixin) or for the same drug after encapsulation in a lipid nanocarrier DSPC:DODAP (2:1). Under both conditions there is a strong binding to serum albumin, at one binding site, suggesting the need to produce a stealth nanosystem. Finally the cellular uptake of lipid nanocarriers loaded with Daunorubicin was investigated in cancer cells using fluorescence lifetime imaging microscopy. From the images obtained it was possible to conclude that even at short incubation times (15 min) there was a distribution of the drug in the cytoplasm, whereas for longer incubation periods (4 h) the drug has reached the nucleus.

Timeline

Login to access the full chart related to this output.

If you don’t have an account, click here to discover Explorer

X Demographics

X Demographics

The data shown below were collected from the profiles of 4 X users who shared this research output. Click here to find out more about how the information was compiled.
As of 1 July 2024, you may notice a temporary increase in the numbers of X profiles with Unknown location. Click here to learn more.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 27 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 27 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 5 19%
Student > Bachelor 3 11%
Student > Master 3 11%
Unspecified 2 7%
Researcher 1 4%
Other 0 0%
Unknown 13 48%
Readers by discipline Count As %
Pharmacology, Toxicology and Pharmaceutical Science 3 11%
Agricultural and Biological Sciences 3 11%
Unspecified 2 7%
Environmental Science 1 4%
Immunology and Microbiology 1 4%
Other 3 11%
Unknown 14 52%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 07 July 2020.
All research outputs
#15,207,446
of 24,143,470 outputs
Outputs from Frontiers in Chemistry
#1,122
of 6,356 outputs
Outputs of similar age
#189,233
of 333,512 outputs
Outputs of similar age from Frontiers in Chemistry
#56
of 190 outputs
Altmetric has tracked 24,143,470 research outputs across all sources so far. This one is in the 34th percentile – i.e., 34% of other outputs scored the same or lower than it.
So far Altmetric has tracked 6,356 research outputs from this source. They receive a mean Attention Score of 2.2. This one has done well, scoring higher than 80% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 333,512 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 40th percentile – i.e., 40% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 190 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 68% of its contemporaries.