↓ Skip to main content

One-Dimensional-Like Titania/4′-Pentyl-4-Biphenylcarbonitrile Composite Synthesized Under Magnetic Field and its Structure–Photocatalytic Activity Relationship

Overview of attention for article published in Frontiers in Chemistry, September 2018
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
4 Dimensions

Readers on

mendeley
13 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
One-Dimensional-Like Titania/4′-Pentyl-4-Biphenylcarbonitrile Composite Synthesized Under Magnetic Field and its Structure–Photocatalytic Activity Relationship
Published in
Frontiers in Chemistry, September 2018
DOI 10.3389/fchem.2018.00370
Pubmed ID
Authors

Nur I. Abu Bakar, Sheela Chandren, Nursyafreena Attan, Wai L. Leaw, Hadi Nur

Abstract

The demonstration of the structure-properties relationship of shape-dependent photocatalysts remains a challenge today. Herein, one-dimensional (1-D)-like titania (TiO2), as a model photocatalyst, has been synthesized under a strong magnetic field in the presence of a magnetically responsive liquid crystal as the structure-aligning agent to demonstrate the relationship between a well-aligned structure and its photocatalytic properties. The importance of the 1-D-like TiO2 and its relationship with the electronic structures that affect the electron-hole recombination and the photocatalytic activity need to be clarified. The synthesis of 1-D-like TiO2 with liquid crystal as the structure-aligning agent was carried out using the sol-gel method under a magnetic field (0.3 T). The mixture of liquid crystal, 4'-pentyl-4-biphenylcarbonitrile (5CB), tetra-n-butyl orthotitanate (TBOT), 2-propanol, and water, was subjected to slow hydrolysis under a magnetic field. The TiO2-5CB took a well-aligned whiskerlike shape when the reaction mixture was placed under the magnetic field, while irregularly shaped TiO2-5CB particles were formed when no magnetic field was applied. It shows that the strong interaction between 5CB and TBOT during the hydrolysis process under a magnetic field controls the shape of titania. The intensity of the emission peaks in the photoluminescence spectrum of 1-D-like TiO2-5CB was lowered compared with the TiO2-5CB synthesized without the magnetic field, suggesting the occurrence of electron transfer from 5CB to the 1-D-like TiO2-5CB during ultraviolet irradiation. Apart from that, direct current electrical conductivity and Hall effect studies showed that the 1-D-like TiO2 composite enhanced electron mobility. Thus, the recombination of electrons and holes was delayed due to the increase in electron mobility; hence, the photocatalytic activity of the 1-D-like TiO2 composite in the oxidation of styrene in the presence of aqueous hydrogen peroxide under UV irradiation was enhanced. This suggests that the 1-D-like shape of TiO2 composite plays an important role in its photocatalytic activity.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
As of 1 July 2024, you may notice a temporary increase in the numbers of X profiles with Unknown location. Click here to learn more.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 13 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 13 100%

Demographic breakdown

Readers by professional status Count As %
Professor 4 31%
Student > Ph. D. Student 2 15%
Other 1 8%
Lecturer > Senior Lecturer 1 8%
Student > Master 1 8%
Other 0 0%
Unknown 4 31%
Readers by discipline Count As %
Chemistry 3 23%
Agricultural and Biological Sciences 2 15%
Immunology and Microbiology 1 8%
Chemical Engineering 1 8%
Medicine and Dentistry 1 8%
Other 1 8%
Unknown 4 31%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 11 September 2018.
All research outputs
#20,533,292
of 23,103,436 outputs
Outputs from Frontiers in Chemistry
#2,950
of 6,040 outputs
Outputs of similar age
#293,882
of 337,559 outputs
Outputs of similar age from Frontiers in Chemistry
#87
of 202 outputs
Altmetric has tracked 23,103,436 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 6,040 research outputs from this source. They receive a mean Attention Score of 2.0. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 337,559 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 202 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.