↓ Skip to main content

Cyclodextrin-Based Polymer-Supported Bacterium for the Adsorption and in-situ Biodegradation of Phenolic Compounds

Overview of attention for article published in Frontiers in Chemistry, September 2018
Altmetric Badge

About this Attention Score

  • Above-average Attention Score compared to outputs of the same age and source (62nd percentile)

Mentioned by

twitter
2 X users

Citations

dimensions_citation
7 Dimensions

Readers on

mendeley
30 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Cyclodextrin-Based Polymer-Supported Bacterium for the Adsorption and in-situ Biodegradation of Phenolic Compounds
Published in
Frontiers in Chemistry, September 2018
DOI 10.3389/fchem.2018.00403
Pubmed ID
Authors

Abdalla H. Karoyo, Jian Yang, Lee D. Wilson

Abstract

Dual function polymer materials with immobilized Sphingobium Chorophenolicum (SpC) bacterium cells are reported herein that undergo tandem adsorption and biodegradation of phenolic compounds. The cross-linked polymer materials contain β-cyclodextrin (β-CD) with incremental hexamethylene diisocyanate (HDI) cross-linker at variable mole ratios (X = 1, 3, or 6), denoted as HDI-X systems. The adsorptive uptake properties of the insoluble HDI-X polymers (X = 3 and 6) with various phenolic compounds [pentachlorophenol (PCP), 2,4,6-trichlorophenol (TCP), and 2,4,6-trimethylphenol (TMP)] were studied using batch adsorption isotherms. The molecular selective phenol removal (SR) capacity of the HDI-3 and HDI-6 materials was evaluated by electrospray ionization mass spectrometry (ESI-MS). The results were compared against granular activated carbon (GAC) and native β-CD, where 1D/2D 1H NMR spectral characterization of the complexes formed between phenolic guests and a soluble polymer (HDI-1) in aqueous solution provide insight on the intermolecular interactions and the role of cross-linking effects. Immobilization of SpC onto HDI-3 was shown to form a composite polymer/bacterium material. The composite system displays synergistic removal effects due to tandem PCP adsorption and SpC biodegradation to yield by-products such as 2,6-dichloro-1,4-hydroquinone (DCHQ). Apoptosis and cytotoxicity of DCHQ were evaluated using three breast cancer cell lines.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
As of 1 July 2024, you may notice a temporary increase in the numbers of X profiles with Unknown location. Click here to learn more.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 30 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 30 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 5 17%
Student > Master 4 13%
Researcher 3 10%
Student > Doctoral Student 2 7%
Professor 1 3%
Other 3 10%
Unknown 12 40%
Readers by discipline Count As %
Chemistry 4 13%
Environmental Science 3 10%
Engineering 3 10%
Materials Science 2 7%
Agricultural and Biological Sciences 1 3%
Other 2 7%
Unknown 15 50%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 11 September 2018.
All research outputs
#17,990,045
of 23,103,436 outputs
Outputs from Frontiers in Chemistry
#1,751
of 6,040 outputs
Outputs of similar age
#242,138
of 337,559 outputs
Outputs of similar age from Frontiers in Chemistry
#66
of 202 outputs
Altmetric has tracked 23,103,436 research outputs across all sources so far. This one is in the 19th percentile – i.e., 19% of other outputs scored the same or lower than it.
So far Altmetric has tracked 6,040 research outputs from this source. They receive a mean Attention Score of 2.0. This one has gotten more attention than average, scoring higher than 62% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 337,559 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 23rd percentile – i.e., 23% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 202 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 62% of its contemporaries.