↓ Skip to main content

α-Glucosidase Inhibitors From the Coral-Associated Fungus Aspergillus terreus

Overview of attention for article published in Frontiers in Chemistry, September 2018
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
29 Dimensions

Readers on

mendeley
16 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
α-Glucosidase Inhibitors From the Coral-Associated Fungus Aspergillus terreus
Published in
Frontiers in Chemistry, September 2018
DOI 10.3389/fchem.2018.00422
Pubmed ID
Authors

Mengting Liu, Changxing Qi, Weiguang Sun, Ling Shen, Jianping Wang, Junjun Liu, Yongji Lai, Yongbo Xue, Zhengxi Hu, Yonghui Zhang

Abstract

Nine novel butenolide derivatives, including four pairs of enantiomers, named (±)-asperteretones A-D (1a/1b-4a/4b), and a racemate, named asperteretone E (5), were isolated and identified from the coral-associated fungus Aspergillus terreus. All the structures were established based on extensive spectroscopic analyses, including HRESIMS and NMR data. The chiral chromatography analyses allowed the separation of (±)-asperteretones A-D, whose absolute configurations were further confirmed by experimental and calculated electronic circular dichroism (ECD) analysis. Structurally, compounds 2-5 represented the first examples of prenylated γ-butenolides bearing 2-phenyl-3-benzyl-4H-furan-1-one motifs, and their crucial biogenetically related metabolite, compound 1, was uniquely defined by an unexpected cleavage of oxygen bridge between C-1 and C-4. Importantly, (±)-asperteretal D and (4S)-4-decarboxylflavipesolide C were revised to (±)-asperteretones B (2a/2b) and D (4), respectively. Additionally, compounds 1a/1b-4a/4b and 5 were evaluated for the α-glucosidase inhibitory activity, and all these compounds exhibited potent inhibitory potency against α-glucosidase, with IC50 values ranging from 15.7 ± 1.1 to 53.1 ± 1.4 μM, which was much lower than that of the positive control acarbose (IC50 = 154.7 ± 8.1 μM), endowing them as promising leading molecules for the discovery of new α-glucosidase inhibitors for type-2 diabetes mellitus treatment.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 16 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 16 100%

Demographic breakdown

Readers by professional status Count As %
Student > Master 4 25%
Student > Doctoral Student 2 13%
Student > Bachelor 2 13%
Student > Ph. D. Student 2 13%
Lecturer 1 6%
Other 1 6%
Unknown 4 25%
Readers by discipline Count As %
Medicine and Dentistry 3 19%
Pharmacology, Toxicology and Pharmaceutical Science 3 19%
Chemistry 2 13%
Biochemistry, Genetics and Molecular Biology 2 13%
Environmental Science 1 6%
Other 0 0%
Unknown 5 31%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 13 September 2018.
All research outputs
#20,533,292
of 23,103,436 outputs
Outputs from Frontiers in Chemistry
#2,950
of 6,040 outputs
Outputs of similar age
#294,173
of 337,955 outputs
Outputs of similar age from Frontiers in Chemistry
#87
of 202 outputs
Altmetric has tracked 23,103,436 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 6,040 research outputs from this source. They receive a mean Attention Score of 2.0. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 337,955 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 202 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.