↓ Skip to main content

From In silico Protein Epitope Density Prediction to Testing Escherichia coli O157:H7 Vaccine Candidates in a Murine Model of Colonization

Overview of attention for article published in Frontiers in Cellular and Infection Microbiology, August 2016
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
2 X users

Citations

dimensions_citation
15 Dimensions

Readers on

mendeley
27 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
From In silico Protein Epitope Density Prediction to Testing Escherichia coli O157:H7 Vaccine Candidates in a Murine Model of Colonization
Published in
Frontiers in Cellular and Infection Microbiology, August 2016
DOI 10.3389/fcimb.2016.00094
Pubmed ID
Authors

Daniel Tapia, Brittany N. Ross, Anjana Kalita, Mridul Kalita, Christopher L. Hatcher, Laura A. Muruato, Alfredo G. Torres

Abstract

Enterohemorrhagic Escherichia coli (EHEC) O157:H7 is a leading cause of foodborne illnesses worldwide and is a common serotype linked to hemorrhagic colitis and an important cause of hemolytic uremic syndrome (HUS). Treatment of EHEC O157:H7 infections is complicated, as antibiotics can exacerbate Shiga toxin (Stx) production and lead to more severe symptoms including HUS. To date, no vaccines have been approved for human use, exposing a void in both treatment and prevention of EHEC O157:H7 infections. Previously, our lab has shown success in identifying novel vaccine candidates via bio- and immunoinformatics approaches, which are capable of reducing bacterial colonization in an in vivo model of intestinal colonization. In this study, we further characterized 17 of the identified vaccine candidates at the bioinformatics level and evaluated the protective capacity of the top three candidates when administered as DNA vaccines in our murine model of EHEC O157:H7 colonization. Based on further immunoinformatic predictions, these vaccine candidates were expected to induce neutralizing antibodies in a Th2-skewed immunological response. Immunization of BALB/c mice with two of these candidates resulted in reduced bacterial colonization following EHEC O157:H7 challenge. Additionally, immune sera was shown to prevent bacterial adhesion in vitro to Caco-2 cells. Together, this study provides further validation of our immunoinformatic analyses and identifies promising vaccine candidates against EHEC O157:H7.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
As of 1 July 2024, you may notice a temporary increase in the numbers of X profiles with Unknown location. Click here to learn more.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 27 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 27 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 5 19%
Student > Master 4 15%
Researcher 3 11%
Student > Doctoral Student 2 7%
Professor 2 7%
Other 4 15%
Unknown 7 26%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 5 19%
Immunology and Microbiology 5 19%
Medicine and Dentistry 3 11%
Nursing and Health Professions 2 7%
Veterinary Science and Veterinary Medicine 2 7%
Other 3 11%
Unknown 7 26%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 02 November 2018.
All research outputs
#14,858,822
of 22,884,315 outputs
Outputs from Frontiers in Cellular and Infection Microbiology
#3,227
of 6,440 outputs
Outputs of similar age
#205,079
of 336,882 outputs
Outputs of similar age from Frontiers in Cellular and Infection Microbiology
#22
of 37 outputs
Altmetric has tracked 22,884,315 research outputs across all sources so far. This one is in the 33rd percentile – i.e., 33% of other outputs scored the same or lower than it.
So far Altmetric has tracked 6,440 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 5.3. This one is in the 44th percentile – i.e., 44% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 336,882 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 36th percentile – i.e., 36% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 37 others from the same source and published within six weeks on either side of this one. This one is in the 35th percentile – i.e., 35% of its contemporaries scored the same or lower than it.