↓ Skip to main content

Heparin-binding Hemagglutinin of Mycobacterium tuberculosis Is an Inhibitor of Autophagy

Overview of attention for article published in Frontiers in Cellular and Infection Microbiology, February 2017
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
26 Dimensions

Readers on

mendeley
40 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Heparin-binding Hemagglutinin of Mycobacterium tuberculosis Is an Inhibitor of Autophagy
Published in
Frontiers in Cellular and Infection Microbiology, February 2017
DOI 10.3389/fcimb.2017.00033
Pubmed ID
Authors

Qing Zheng, Zhi Li, Shan Zhou, Qian Zhang, Lei Zhou, Xiaorui Fu, Liu Yang, Yueyun Ma, Xiaoke Hao

Abstract

Airway epithelial cell is often the initial site of attack by pathogens, and cell death is commonly caused by internalization of Mycobacterium tuberculosis (Mtb). However, the mechanism of interaction between epithelial cells and Mtb is not well understood. In this study, we investigated the role of the heparin-binding hemagglutinin (HBHA) protein of Mtb in the function of epithelial cells. In particular, the autophagy of A549 cells was determined based on microtubule-associated protein 1 light chain 3 alpha (LC3) activity. Autophagosome formation was detected by Monodansylcadaverine (MDC) staining and immune fluorescence staining of LC3. Autophagy could be significantly suppressed by HBHA protein. In addition, the LDH assay results showed that HBHA treatment could induce death on A549 cells. To explore the form of cell death, we detected the activity of caspase-3 and LDH release of A549 cells in the presence or absence of caspase inhibitor Z-VAD-FMK. Results demonstrated that HBHA treatment could induce apoptosis of A549 cells. To further confirm these results, we constructed the recombinant Mycobacterium smegmatis (MS) expressing HBHA (rMS-HBHA) and explored the influence of rMS-HBHA on the function of A549 cells. rMS-HBHA infection significantly inhibited LC3 expression and the maturation of autophagosomes in A549 cells. Subsequently, we infected A549 cells with MS and detected the viability of intracellular MS by CFU counts. rMS-HBHA showed higher survival and replication capacity in A549 cells than those of the wild-type MS. Finally, infection of A549 cells with rMS-HBHA caused further apoptosis. These findings suggested that rMS-HBHA could inhibit autophagy, promote its survival and replication within A549 cells, and subsequently induce apoptosis on infected cells to facilitate infection.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
As of 1 July 2024, you may notice a temporary increase in the numbers of X profiles with Unknown location. Click here to learn more.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 40 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 40 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 10 25%
Student > Master 6 15%
Student > Bachelor 6 15%
Researcher 5 13%
Other 2 5%
Other 2 5%
Unknown 9 23%
Readers by discipline Count As %
Medicine and Dentistry 7 18%
Immunology and Microbiology 6 15%
Agricultural and Biological Sciences 5 13%
Biochemistry, Genetics and Molecular Biology 4 10%
Pharmacology, Toxicology and Pharmaceutical Science 1 3%
Other 4 10%
Unknown 13 33%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 07 February 2017.
All research outputs
#20,402,251
of 22,952,268 outputs
Outputs from Frontiers in Cellular and Infection Microbiology
#6,027
of 6,462 outputs
Outputs of similar age
#355,801
of 420,202 outputs
Outputs of similar age from Frontiers in Cellular and Infection Microbiology
#98
of 114 outputs
Altmetric has tracked 22,952,268 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 6,462 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 5.3. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 420,202 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 114 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.