↓ Skip to main content

Lipopolysaccharide Upregulated Intestinal Epithelial Cell Expression of Fn14 and Activation of Fn14 Signaling Amplify Intestinal TLR4-Mediated Inflammation

Overview of attention for article published in Frontiers in Cellular and Infection Microbiology, July 2017
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
18 Dimensions

Readers on

mendeley
25 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Lipopolysaccharide Upregulated Intestinal Epithelial Cell Expression of Fn14 and Activation of Fn14 Signaling Amplify Intestinal TLR4-Mediated Inflammation
Published in
Frontiers in Cellular and Infection Microbiology, July 2017
DOI 10.3389/fcimb.2017.00315
Pubmed ID
Authors

Xuefeng Qi, Lijuan Qin, Ruijing Du, Yungang Chen, Mingzhu Lei, Meiyu Deng, Jingyu Wang

Abstract

TLR4 in intestinal epithelial cells has been shown both inflammatory and homeostatic roles following binding of its cognate ligand lipopolysaccharide (LPS). TWEAK-Fn14 axis plays an important role in pathologies caused by excessive or abnormal inflammatory responses. This study aimed to evaluate potential cross-talk between TLR4 and TWEAK/Fn14 system in porcine small intestinal epithelial cells. Our in vivo results showed that, compared with the age-matched normal control piglets, increased expression of Fn14 in epithelium and decreased TWEAK expression in lamina propria were detected in the small intestinal of piglets stimulated with LPS. Consistent with this finding, treatment with LPS increased the expression of Fn14 and TLR4 while decreased TWEAK expression in porcine small intestinal epithelial cell lines SIEC02. Interestingly, modulating Fn14 activation using agonistic anti-Fn14 decreased TLR4-mediated TNF-α production by SIEC02. In addition, pretreatment of LPS-stimulated SIEC02 with recombinant TWEAK protein suppresses the expression of Fn14 and TNF-α and inhibits the negative impact of LPS on the tight junctional protein occludin expression. In conclusion, this study demonstrates that the TWEAK-independent Fn14 activation augments TLR4-mediated inflammatory responses in the intestine of piglets. Furthermore, the TWEAK-dependent suppression of Fn14 signaling may play a role in intestinal homeostasis.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
As of 1 July 2024, you may notice a temporary increase in the numbers of X profiles with Unknown location. Click here to learn more.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 25 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 25 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 7 28%
Student > Doctoral Student 4 16%
Researcher 4 16%
Student > Bachelor 2 8%
Other 1 4%
Other 4 16%
Unknown 3 12%
Readers by discipline Count As %
Agricultural and Biological Sciences 6 24%
Biochemistry, Genetics and Molecular Biology 5 20%
Medicine and Dentistry 4 16%
Nursing and Health Professions 1 4%
Unspecified 1 4%
Other 4 16%
Unknown 4 16%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 11 July 2017.
All research outputs
#20,434,884
of 22,988,380 outputs
Outputs from Frontiers in Cellular and Infection Microbiology
#6,051
of 6,485 outputs
Outputs of similar age
#272,460
of 312,555 outputs
Outputs of similar age from Frontiers in Cellular and Infection Microbiology
#146
of 163 outputs
Altmetric has tracked 22,988,380 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 6,485 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 5.3. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 312,555 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 163 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.