↓ Skip to main content

The Francisella Type VI Secretion System

Overview of attention for article published in Frontiers in Cellular and Infection Microbiology, April 2018
Altmetric Badge

About this Attention Score

  • Above-average Attention Score compared to outputs of the same age (60th percentile)
  • Good Attention Score compared to outputs of the same age and source (72nd percentile)

Mentioned by

twitter
6 X users

Citations

dimensions_citation
50 Dimensions

Readers on

mendeley
100 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
The Francisella Type VI Secretion System
Published in
Frontiers in Cellular and Infection Microbiology, April 2018
DOI 10.3389/fcimb.2018.00121
Pubmed ID
Authors

Daniel L. Clemens, Bai-Yu Lee, Marcus A. Horwitz

Abstract

Francisella tularensisis subsp. tularensis is an intracellular bacterial pathogen and the causative agent of the life-threatening zoonotic disease tularemia. The Francisella Pathogenicity Island encodes a large secretion apparatus, known as a Type VI Secretion System (T6SS), which is essential for Francisella to escape from its phagosome and multiply within host macrophages and to cause disease in animals. The T6SS, found in one-quarter of Gram-negative bacteria including many highly pathogenic ones, is a recently discovered secretion system that is not yet fully understood. Nevertheless, there have been remarkable advances in our understanding of the structure, composition, and function of T6SSs of several bacteria in the past few years. The system operates like an inside-out headless contractile phage that is anchored to the bacterial membrane via a baseplate and membrane complex. The system injects effector molecules across the inner and outer bacterial membrane and into host prokaryotic or eukaryotic targets to kill, intoxicate, or in the case of Francisella, hijack the target cell. Recent advances include an atomic model of the contractile sheath, insights into the mechanics of sheath contraction, the composition of the baseplate and membrane complex, the process of assembly of the apparatus, and identification of numerous effector molecules and activities. While Francisella T6SS appears to be an outlier among T6SSs, with limited or no sequence homology with other systems, its structure and organization are strikingly similar to other systems. Nevertheless, we have only scratched the surface in uncovering the mysteries of the Francisella T6SS, and there are numerous questions that remain to be answered.

X Demographics

X Demographics

The data shown below were collected from the profiles of 6 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 100 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 100 100%

Demographic breakdown

Readers by professional status Count As %
Student > Bachelor 20 20%
Student > Ph. D. Student 14 14%
Student > Master 14 14%
Researcher 5 5%
Student > Doctoral Student 4 4%
Other 11 11%
Unknown 32 32%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 21 21%
Agricultural and Biological Sciences 17 17%
Immunology and Microbiology 14 14%
Pharmacology, Toxicology and Pharmaceutical Science 2 2%
Environmental Science 2 2%
Other 8 8%
Unknown 36 36%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 4. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 11 April 2019.
All research outputs
#7,306,228
of 23,041,514 outputs
Outputs from Frontiers in Cellular and Infection Microbiology
#1,549
of 6,523 outputs
Outputs of similar age
#126,619
of 326,550 outputs
Outputs of similar age from Frontiers in Cellular and Infection Microbiology
#32
of 118 outputs
Altmetric has tracked 23,041,514 research outputs across all sources so far. This one has received more attention than most of these and is in the 67th percentile.
So far Altmetric has tracked 6,523 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 5.4. This one has done well, scoring higher than 75% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 326,550 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 60% of its contemporaries.
We're also able to compare this research output to 118 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 72% of its contemporaries.