↓ Skip to main content

HldE Is Important for Virulence Phenotypes in Enterotoxigenic Escherichia coli

Overview of attention for article published in Frontiers in Cellular and Infection Microbiology, August 2018
Altmetric Badge

Mentioned by

twitter
2 X users

Readers on

mendeley
28 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
HldE Is Important for Virulence Phenotypes in Enterotoxigenic Escherichia coli
Published in
Frontiers in Cellular and Infection Microbiology, August 2018
DOI 10.3389/fcimb.2018.00253
Pubmed ID
Authors

Grith M. Maigaard Hermansen, Anders Boysen, Thøger J. Krogh, Arkadiusz Nawrocki, Lars Jelsbak, Jakob Møller-Jensen

Abstract

Enterotoxigenic Escherichia coli (ETEC) is one of the most common causes of diarrheal illness in third world countries and it especially affects children and travelers visiting these regions. ETEC causes disease by adhering tightly to the epithelial cells in a concerted effort by adhesins, flagella, and other virulence-factors. When attached ETEC secretes toxins targeting the small intestine host-cells, which ultimately leads to osmotic diarrhea. HldE is a bifunctional protein that catalyzes the nucleotide-activated heptose precursors used in the biosynthesis of lipopolysaccharide (LPS) and in post-translational protein glycosylation. Both mechanisms have been linked to ETEC virulence: Lipopolysaccharide (LPS) is a major component of the bacterial outer membrane and is needed for transport of heat-labile toxins to the host cells, and ETEC glycoproteins have been shown to play an important role for bacterial adhesion to host epithelia. Here, we report that HldE plays an important role for ETEC virulence. Deletion of hldE resulted in markedly reduced binding to the human intestinal cells due to reduced expression of colonization factor CFA/I on the bacterial surface. Deletion of hldE also affected ETEC motility in a flagella-dependent fashion. Expression of both colonization factors and flagella was inhibited at the level of transcription. In addition, the hldE mutant displayed altered growth, increased biofilm formation and clumping in minimal growth medium. Investigation of an orthogonal LPS-deficient mutant combined with mass spectrometric analysis of protein glycosylation indicated that HldE exerts its role on ETEC virulence both through protein glycosylation and correct LPS configuration. These results place HldE as an attractive target for the development of future antimicrobial therapeutics.

Timeline

Login to access the full chart related to this output.

If you don’t have an account, click here to discover Explorer

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
As of 1 July 2024, you may notice a temporary increase in the numbers of X profiles with Unknown location. Click here to learn more.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 28 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 28 100%

Demographic breakdown

Readers by professional status Count As %
Student > Bachelor 6 21%
Other 4 14%
Researcher 4 14%
Student > Ph. D. Student 3 11%
Student > Postgraduate 2 7%
Other 3 11%
Unknown 6 21%
Readers by discipline Count As %
Agricultural and Biological Sciences 6 21%
Biochemistry, Genetics and Molecular Biology 3 11%
Medicine and Dentistry 2 7%
Engineering 2 7%
Immunology and Microbiology 2 7%
Other 7 25%
Unknown 6 21%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 23 August 2018.
All research outputs
#17,987,106
of 23,099,576 outputs
Outputs from Frontiers in Cellular and Infection Microbiology
#4,209
of 6,566 outputs
Outputs of similar age
#237,795
of 330,798 outputs
Outputs of similar age from Frontiers in Cellular and Infection Microbiology
#76
of 105 outputs
Altmetric has tracked 23,099,576 research outputs across all sources so far. This one is in the 19th percentile – i.e., 19% of other outputs scored the same or lower than it.
So far Altmetric has tracked 6,566 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 5.5. This one is in the 24th percentile – i.e., 24% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 330,798 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 23rd percentile – i.e., 23% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 105 others from the same source and published within six weeks on either side of this one. This one is in the 17th percentile – i.e., 17% of its contemporaries scored the same or lower than it.