↓ Skip to main content

Loss of Metabolic Flexibility in the Failing Heart

Overview of attention for article published in Frontiers in Cardiovascular Medicine, June 2018
Altmetric Badge

About this Attention Score

  • Above-average Attention Score compared to outputs of the same age (53rd percentile)
  • Above-average Attention Score compared to outputs of the same age and source (63rd percentile)

Mentioned by

twitter
6 X users
facebook
1 Facebook page

Citations

dimensions_citation
281 Dimensions

Readers on

mendeley
282 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Loss of Metabolic Flexibility in the Failing Heart
Published in
Frontiers in Cardiovascular Medicine, June 2018
DOI 10.3389/fcvm.2018.00068
Pubmed ID
Authors

Qutuba G. Karwi, Golam M. Uddin, Kim L. Ho, Gary D. Lopaschuk

Abstract

To maintain its high energy demand the heart is equipped with a highly complex and efficient enzymatic machinery that orchestrates ATP production using multiple energy substrates, namely fatty acids, carbohydrates (glucose and lactate), ketones and amino acids. The contribution of these individual substrates to ATP production can dramatically change, depending on such variables as substrate availability, hormonal status and energy demand. This "metabolic flexibility" is a remarkable virtue of the heart, which allows utilization of different energy substrates at different rates to maintain contractile function. In heart failure, cardiac function is reduced, which is accompanied by discernible energy metabolism perturbations and impaired metabolic flexibility. While it is generally agreed that overall mitochondrial ATP production is impaired in the failing heart, there is less consensus as to what actual switches in energy substrate preference occur. The failing heart shift toward a greater reliance on glycolysis and ketone body oxidation as a source of energy, with a decrease in the contribution of glucose oxidation to mitochondrial oxidative metabolism. The heart also becomes insulin resistant. However, there is less consensus as to what happens to fatty acid oxidation in heart failure. While it is generally believed that fatty acid oxidation decreases, a number of clinical and experimental studies suggest that fatty acid oxidation is either not changed or is increased in heart failure. Of importance, is that any metabolic shift that does occur has the potential to aggravate cardiac dysfunction and the progression of the heart failure. An increasing body of evidence shows that increasing cardiac ATP production and/or modulating cardiac energy substrate preference positively correlates with heart function and can lead to better outcomes. This includes increasing glucose and ketone oxidation and decreasing fatty acid oxidation. In this review we present the physiology of the energy metabolism pathways in the heart and the changes that occur in these pathways in heart failure. We also look at the interventions which are aimed at manipulating the myocardial metabolic pathways toward more efficient substrate utilization which will eventually improve cardiac performance.

X Demographics

X Demographics

The data shown below were collected from the profiles of 6 X users who shared this research output. Click here to find out more about how the information was compiled.
As of 1 July 2024, you may notice a temporary increase in the numbers of X profiles with Unknown location. Click here to learn more.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 282 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 282 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 42 15%
Student > Master 38 13%
Researcher 35 12%
Student > Bachelor 31 11%
Student > Doctoral Student 13 5%
Other 27 10%
Unknown 96 34%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 62 22%
Medicine and Dentistry 46 16%
Agricultural and Biological Sciences 22 8%
Pharmacology, Toxicology and Pharmaceutical Science 14 5%
Chemistry 9 3%
Other 25 9%
Unknown 104 37%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 3. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 04 April 2019.
All research outputs
#7,667,572
of 23,341,064 outputs
Outputs from Frontiers in Cardiovascular Medicine
#1,295
of 7,245 outputs
Outputs of similar age
#131,567
of 330,093 outputs
Outputs of similar age from Frontiers in Cardiovascular Medicine
#22
of 58 outputs
Altmetric has tracked 23,341,064 research outputs across all sources so far. This one is in the 44th percentile – i.e., 44% of other outputs scored the same or lower than it.
So far Altmetric has tracked 7,245 research outputs from this source. They receive a mean Attention Score of 4.3. This one has done well, scoring higher than 81% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 330,093 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 53% of its contemporaries.
We're also able to compare this research output to 58 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 63% of its contemporaries.