↓ Skip to main content

LDL Receptor Pathway Regulation by miR-224 and miR-520d

Overview of attention for article published in Frontiers in Cardiovascular Medicine, May 2020
Altmetric Badge

About this Attention Score

  • Good Attention Score compared to outputs of the same age (68th percentile)
  • Good Attention Score compared to outputs of the same age and source (66th percentile)

Mentioned by

twitter
10 X users

Citations

dimensions_citation
16 Dimensions

Readers on

mendeley
18 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
LDL Receptor Pathway Regulation by miR-224 and miR-520d
Published in
Frontiers in Cardiovascular Medicine, May 2020
DOI 10.3389/fcvm.2020.00081
Pubmed ID
Authors

Alessandro G. Salerno, Coen van Solingen, Elena Scotti, Amarylis C. B. A. Wanschel, Milessa S. Afonso, Scott R. Oldebeken, Westley Spiro, Peter Tontonoz, Katey J. Rayner, Kathryn J. Moore

Abstract

MicroRNAs (miRNA) have emerged as important post-transcriptional regulators of metabolic pathways that contribute to cellular and systemic lipoprotein homeostasis. Here, we identify two conserved miRNAs, miR-224, and miR-520d, which target gene networks regulating hepatic expression of the low-density lipoprotein (LDL) receptor (LDLR) and LDL clearance. In silico prediction of miR-224 and miR-520d target gene networks showed that they each repress multiple genes impacting the expression of the LDLR, including the chaperone molecules PCSK9 and IDOL that limit LDLR expression at the cell surface and the rate-limiting enzyme for cholesterol synthesis HMGCR, which is the target of LDL-lowering statin drugs. Using gain- and loss-of-function studies, we tested the role of miR-224 and miR-520d in the regulation of those predicted targets and their impact on LDLR expression. We show that overexpression of miR-224 or miR-520d dose-dependently reduced the activity of PCSK9, IDOL, and HMGCR 3'-untranslated region (3'-UTR)-luciferase reporter constructs and that this repression was abrogated by mutation of the putative miR-224 or miR-520d response elements in the PCSK9, IDOL, and HMGCR 3'-UTRs. Compared to a control miRNA, overexpression of miR-224 or miR-520d in hepatocytes inhibited PCSK9, IDOL, and HMGCR mRNA and protein levels and decreased PCSK9 secretion. Furthermore, miR-224 and miR-520d repression of PCSK9, IDOL, and HMGCR was associated with an increase in LDLR protein levels and cell surface expression, as well as enhanced LDL binding. Notably, the effects of miR-224 and miR-520d were additive to the effects of statins in upregulating LDLR expression. Finally, we show that overexpression of miR-224 in the livers of Ldlr+/- mice using lipid nanoparticle-mediated delivery resulted in a 15% decrease in plasma levels of LDL cholesterol, compared to a control miRNA. Together, these findings identify roles for miR-224 and miR-520d in the posttranscriptional control of LDLR expression and function.

X Demographics

X Demographics

The data shown below were collected from the profiles of 10 X users who shared this research output. Click here to find out more about how the information was compiled.
As of 1 July 2024, you may notice a temporary increase in the numbers of X profiles with Unknown location. Click here to learn more.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 18 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 18 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 4 22%
Student > Bachelor 2 11%
Librarian 1 6%
Other 1 6%
Unspecified 1 6%
Other 3 17%
Unknown 6 33%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 3 17%
Agricultural and Biological Sciences 2 11%
Medicine and Dentistry 2 11%
Immunology and Microbiology 2 11%
Nursing and Health Professions 1 6%
Other 2 11%
Unknown 6 33%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 6. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 25 October 2023.
All research outputs
#6,438,485
of 25,765,370 outputs
Outputs from Frontiers in Cardiovascular Medicine
#1,068
of 9,400 outputs
Outputs of similar age
#133,211
of 426,262 outputs
Outputs of similar age from Frontiers in Cardiovascular Medicine
#21
of 62 outputs
Altmetric has tracked 25,765,370 research outputs across all sources so far. This one has received more attention than most of these and is in the 74th percentile.
So far Altmetric has tracked 9,400 research outputs from this source. They receive a mean Attention Score of 4.4. This one has done well, scoring higher than 88% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 426,262 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 68% of its contemporaries.
We're also able to compare this research output to 62 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 66% of its contemporaries.