↓ Skip to main content

β-Cell-Specific Glucocorticoid Reactivation Attenuates Inflammatory β-Cell Destruction

Overview of attention for article published in Frontiers in endocrinology, October 2014
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
9 Dimensions

Readers on

mendeley
22 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
β-Cell-Specific Glucocorticoid Reactivation Attenuates Inflammatory β-Cell Destruction
Published in
Frontiers in endocrinology, October 2014
DOI 10.3389/fendo.2014.00165
Pubmed ID
Authors

Xiaoxia Liu, Sophie Turban, Roderick N. Carter, Shakil Ahmad, Lynne Ramage, Scott P. Webster, Brian R. Walker, Jonathan R. Seckl, Nicholas M. Morton

Abstract

Progression and severity of type 1 diabetes is dependent upon inflammatory induction of nitric oxide production and consequent pancreatic β-cell damage. Glucocorticoids (GCs) are highly effective anti-inflammatory agents but have been precluded in type 1 diabetes and in islet transplantation protocols because they exacerbated insulin resistance and suppressed β-cell insulin secretion at the high-doses employed clinically. In contrast, physiological-range elevation of GC action within β-cells ameliorated lipotoxic β-cell failure in transgenic mice overexpressing the intracellular enzyme 11β-hydroxysteroid dehydrogenase type 1 (MIP-HSD1(tg/+) mice). Here, we tested the hypothesis that elevated β-cell 11beta-HSD1 protects against the β-cell destruction elicited by streptozotocin (STZ), a toxin that dose-dependently mimics aspects of inflammatory and autoimmune β-cell destruction. MIP-HSD1(tg/+) mice exhibited an episodic protection from the severe hyperglycemia caused by a single high dose of STZ associated with higher and sustained β-cell survival, maintained β-cell replicative potential, higher plasma and islet insulin levels, reduced inflammatory macrophage infiltration and increased anti-inflammatory T regulatory cell content. MIP-HSD1(tg/+) mice also completely resisted mild hyperglycemia and insulitis induced by multiple low-dose STZ administration. In vitro, MIP-HSD1(tg/+) islets exhibited attenuated STZ-induced nitric oxide production, an effect reversed with a specific 11beta-HSD1 inhibitor. GC regeneration selectively within β-cells protects against inflammatory β-cell destruction, suggesting therapeutic targeting of 11beta-HSD1 may ameliorate processes that exacerbate type 1 diabetes and that hinder islet transplantation.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
As of 1 July 2024, you may notice a temporary increase in the numbers of X profiles with Unknown location. Click here to learn more.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 22 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Japan 1 5%
Unknown 21 95%

Demographic breakdown

Readers by professional status Count As %
Researcher 6 27%
Student > Master 4 18%
Student > Ph. D. Student 3 14%
Professor 2 9%
Student > Doctoral Student 2 9%
Other 3 14%
Unknown 2 9%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 5 23%
Medicine and Dentistry 4 18%
Agricultural and Biological Sciences 3 14%
Pharmacology, Toxicology and Pharmaceutical Science 2 9%
Immunology and Microbiology 1 5%
Other 3 14%
Unknown 4 18%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 14 October 2014.
All research outputs
#21,064,103
of 25,870,940 outputs
Outputs from Frontiers in endocrinology
#6,897
of 13,300 outputs
Outputs of similar age
#197,755
of 269,281 outputs
Outputs of similar age from Frontiers in endocrinology
#37
of 57 outputs
Altmetric has tracked 25,870,940 research outputs across all sources so far. This one is in the 10th percentile – i.e., 10% of other outputs scored the same or lower than it.
So far Altmetric has tracked 13,300 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 5.1. This one is in the 36th percentile – i.e., 36% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 269,281 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 14th percentile – i.e., 14% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 57 others from the same source and published within six weeks on either side of this one. This one is in the 7th percentile – i.e., 7% of its contemporaries scored the same or lower than it.