↓ Skip to main content

Aldo-Keto Reductases 1B in Adrenal Cortex Physiology

Overview of attention for article published in Frontiers in endocrinology, July 2016
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Above-average Attention Score compared to outputs of the same age and source (52nd percentile)

Mentioned by

twitter
2 X users

Citations

dimensions_citation
4 Dimensions

Readers on

mendeley
16 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Aldo-Keto Reductases 1B in Adrenal Cortex Physiology
Published in
Frontiers in endocrinology, July 2016
DOI 10.3389/fendo.2016.00097
Pubmed ID
Authors

Emilie Pastel, Jean-Christophe Pointud, Antoine Martinez, A. Marie Lefrançois-Martinez

Abstract

Aldose reductase (AKR1B) proteins are monomeric enzymes, belonging to the aldo-keto reductase (AKR) superfamily. They perform oxidoreduction of carbonyl groups from a wide variety of substrates, such as aliphatic and aromatic aldehydes or ketones. Due to the involvement of human aldose reductases in pathologies, such as diabetic complications and cancer, AKR1B subgroup enzymatic properties have been extensively characterized. However, the issue of AKR1B function in non-pathologic conditions remains poorly resolved. Adrenal activities generated large amount of harmful aldehydes from lipid peroxidation and steroidogenesis, including 4-hydroxynonenal (4-HNE) and isocaproaldehyde (4-methylpentanal), which can both be reduced by AKR1B proteins. More recently, some AKR1B isoforms have been shown to be endowed with prostaglandin F synthase (PGFS) activity, suggesting that, in addition to possible scavenger function, they could instigate paracrine signals. Interestingly, the adrenal gland is one of the major sites for human and murine AKR1B expression, suggesting that their detoxifying/signaling activity could be specifically required for the correct handling of adrenal function. Moreover, chronic effects of ACTH result in a coordinated regulation of genes encoding the steroidogenic enzymes and some AKR1B isoforms. This review presents the molecular mechanisms accounting for the adrenal-specific expression of some AKR1B genes. Using data from recent mouse genetic models, we will try to connect their enzymatic properties and regulation with adrenal functions.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
As of 1 July 2024, you may notice a temporary increase in the numbers of X profiles with Unknown location. Click here to learn more.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 16 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Japan 1 6%
Unknown 15 94%

Demographic breakdown

Readers by professional status Count As %
Student > Master 4 25%
Student > Ph. D. Student 4 25%
Student > Bachelor 2 13%
Researcher 2 13%
Student > Doctoral Student 1 6%
Other 1 6%
Unknown 2 13%
Readers by discipline Count As %
Agricultural and Biological Sciences 8 50%
Biochemistry, Genetics and Molecular Biology 3 19%
Medicine and Dentistry 2 13%
Pharmacology, Toxicology and Pharmaceutical Science 1 6%
Unknown 2 13%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 27 July 2016.
All research outputs
#16,580,596
of 25,374,917 outputs
Outputs from Frontiers in endocrinology
#4,295
of 13,013 outputs
Outputs of similar age
#236,856
of 378,455 outputs
Outputs of similar age from Frontiers in endocrinology
#32
of 69 outputs
Altmetric has tracked 25,374,917 research outputs across all sources so far. This one is in the 34th percentile – i.e., 34% of other outputs scored the same or lower than it.
So far Altmetric has tracked 13,013 research outputs from this source. They receive a mean Attention Score of 4.9. This one has gotten more attention than average, scoring higher than 66% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 378,455 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 36th percentile – i.e., 36% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 69 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 52% of its contemporaries.