↓ Skip to main content

Glycemic and Metabolic Effects of Two Long Bouts of Moderate-Intensity Exercise in Men with Normal Glucose Tolerance or Type 2 Diabetes

Overview of attention for article published in Frontiers in endocrinology, July 2017
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Good Attention Score compared to outputs of the same age and source (70th percentile)

Mentioned by

twitter
4 X users

Citations

dimensions_citation
8 Dimensions

Readers on

mendeley
70 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Glycemic and Metabolic Effects of Two Long Bouts of Moderate-Intensity Exercise in Men with Normal Glucose Tolerance or Type 2 Diabetes
Published in
Frontiers in endocrinology, July 2017
DOI 10.3389/fendo.2017.00154
Pubmed ID
Authors

Saeed Reza Eshghi, Kevin Fletcher, Étienne Myette-Côté, Cody Durrer, Raniah Q. Gabr, Jonathan P. Little, Peter Senior, Craig Steinback, Margie H. Davenport, Gordon J. Bell, Dion R. Brocks, Normand G. Boulé

Abstract

The glycemic and insulinemic responses following 30-60 min of exercise have been extensively studied, and a dose-response has been proposed between exercise duration, or volume, and improvements in glucose tolerance or insulin sensitivity. However, few studies have examined the effects of longer bouts of exercise in type 2 diabetes (T2D). Longer bouts may have a greater potential to affect glucagon, interleukin-6 (IL-6) and incretin hormones [i.e., glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic peptide (GIP)]. To examine the effect of two bouts of long-duration, moderate-intensity exercise on incretins, glucagon, and IL-6 responses before and after exercise, as well as in response to an oral glucose tolerance test (OGTT) conducted the following day. Twelve men, six with and six without T2D, participated in two separate conditions (i.e., exercise vs. rest) according to a randomized crossover design. On day 1, participants either rested or performed two 90 min bouts of treadmill exercise (separated by 3.5 h) at 80% of their ventilatory threshold. All participants received standardized meals on day 1. On day 2 of each condition, glucose and hormonal responses were measured during a 4-h OGTT. On day 1, exercise increased IL-6 at the end of the first bout of exercise (exercise by time interaction p = 0.03) and GIP overall (main effect of exercise p = 0.004). Glucose was reduced to a greater extent in T2D following exercise (exercise by T2D interaction p = 0.03). On day 2, GIP and active GLP-1 were increased in the fasting state (p = 0.05 and p = 0.03, respectively), while plasma insulin and glucagon concentrations were reduced during the OGTT (p = 0.01 and p = 0.02, respectively) in the exercise compared to the rest condition for both healthy controls and T2D. Postprandial glucose was elevated in T2D compared to healthy control (p < 0.05) but was not affected by exercise. Long-duration, moderate-intensity aerobic exercise can increase IL-6. On the day following exercise, fasting incretins remained increased but postprandial insulin and glucagon were decreased without affecting postprandial glucose. This long duration of exercise may not be appropriate for some people, and further research should investigate why next day glucose tolerance was unchanged.

X Demographics

X Demographics

The data shown below were collected from the profiles of 4 X users who shared this research output. Click here to find out more about how the information was compiled.
As of 1 July 2024, you may notice a temporary increase in the numbers of X profiles with Unknown location. Click here to learn more.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 70 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 70 100%

Demographic breakdown

Readers by professional status Count As %
Student > Bachelor 12 17%
Student > Ph. D. Student 10 14%
Student > Master 7 10%
Researcher 6 9%
Student > Doctoral Student 5 7%
Other 12 17%
Unknown 18 26%
Readers by discipline Count As %
Medicine and Dentistry 14 20%
Sports and Recreations 11 16%
Nursing and Health Professions 10 14%
Biochemistry, Genetics and Molecular Biology 5 7%
Agricultural and Biological Sciences 4 6%
Other 5 7%
Unknown 21 30%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 3. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 08 August 2017.
All research outputs
#14,541,990
of 25,382,440 outputs
Outputs from Frontiers in endocrinology
#2,865
of 13,018 outputs
Outputs of similar age
#158,093
of 324,855 outputs
Outputs of similar age from Frontiers in endocrinology
#30
of 102 outputs
Altmetric has tracked 25,382,440 research outputs across all sources so far. This one is in the 42nd percentile – i.e., 42% of other outputs scored the same or lower than it.
So far Altmetric has tracked 13,018 research outputs from this source. They receive a mean Attention Score of 4.9. This one has done well, scoring higher than 77% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 324,855 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 50% of its contemporaries.
We're also able to compare this research output to 102 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 70% of its contemporaries.