↓ Skip to main content

Variation in the Sweet Taste Receptor Gene and Dietary Intake in a Swedish Middle-Aged Population

Overview of attention for article published in Frontiers in endocrinology, December 2017
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
13 Dimensions

Readers on

mendeley
49 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Variation in the Sweet Taste Receptor Gene and Dietary Intake in a Swedish Middle-Aged Population
Published in
Frontiers in endocrinology, December 2017
DOI 10.3389/fendo.2017.00348
Pubmed ID
Authors

Caroline Habberstad, Isabel Drake, Emily Sonestedt

Abstract

The preference for sweet taste is partially genetically determined. The major allele of the single nucleotide polymorphism rs12033832 in the sweet taste receptor (TAS1R2) has previously been associated with lower sugar sensitivity and higher sugar intake among overweight individuals. The aim of the present study was to examine the association between dietary intake and the TAS1R2 genotype in lean and overweight individuals in the population-based Malmö Diet and Cancer (MDC) cohort using dietary intake data with a high validity. In total, 3,602 participants (46-68 years old) from the MDC cohort who underwent baseline examinations between 1991 and 1994, who were non-smokers without diabetes, and for whom information regarding TAS1R2 rs7534618 (a proxy for rs12033832) was available were included in this study. After excluding individuals with potentially misreported and unstable food habits, 2,204 individuals were retained. A modified dietary history method, including a 7-day food diary of prepared meals, which was specifically designed for the MDC study was used. Only modest associations were observed between dietary intake and the TAS1R2 genotype. We observed slightly stronger associations after excluding individuals with potentially misreported and unstable food habits. Among the participants with a BMI ≥25, the major (T) allele carriers consumed more carbohydrates [TT = 45.2 percentage of energy intake (E%); TG = 45.2E%; GG = 43.7E%; p = 0.01] and less fat (p = 0.03), but these participants did not consume more sucrose than the G-allele carriers. No association was observed between the genotype and dietary intake among the participants with a BMI <25. Although the higher carbohydrate intake among the major allele carriers was consistent with that reported in a previous study, the magnitudes of the associations were substantially smaller. Because we observed no association with sucrose, this allele is unlikely to be useful as a marker of sugar intake in the MDC population.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
As of 1 July 2024, you may notice a temporary increase in the numbers of X profiles with Unknown location. Click here to learn more.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 49 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 49 100%

Demographic breakdown

Readers by professional status Count As %
Student > Bachelor 9 18%
Student > Ph. D. Student 8 16%
Student > Master 6 12%
Researcher 4 8%
Lecturer 4 8%
Other 5 10%
Unknown 13 27%
Readers by discipline Count As %
Medicine and Dentistry 11 22%
Agricultural and Biological Sciences 7 14%
Nursing and Health Professions 4 8%
Biochemistry, Genetics and Molecular Biology 3 6%
Unspecified 2 4%
Other 6 12%
Unknown 16 33%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 13 December 2017.
All research outputs
#22,764,772
of 25,382,440 outputs
Outputs from Frontiers in endocrinology
#8,340
of 13,021 outputs
Outputs of similar age
#383,469
of 443,420 outputs
Outputs of similar age from Frontiers in endocrinology
#70
of 107 outputs
Altmetric has tracked 25,382,440 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 13,021 research outputs from this source. They receive a mean Attention Score of 4.9. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 443,420 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 107 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.