↓ Skip to main content

Glial Cells Missing 1 Regulates Equine Chorionic Gonadotrophin Beta Subunit via Binding to the Proximal Promoter

Overview of attention for article published in Frontiers in endocrinology, April 2018
Altmetric Badge

About this Attention Score

  • Good Attention Score compared to outputs of the same age (68th percentile)
  • Good Attention Score compared to outputs of the same age and source (79th percentile)

Mentioned by

twitter
6 X users

Citations

dimensions_citation
2 Dimensions

Readers on

mendeley
7 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Glial Cells Missing 1 Regulates Equine Chorionic Gonadotrophin Beta Subunit via Binding to the Proximal Promoter
Published in
Frontiers in endocrinology, April 2018
DOI 10.3389/fendo.2018.00195
Pubmed ID
Authors

Jordan E. Read, Victoria Cabrera-Sharp, Phoebe Kitscha, Judith E. Cartwright, Peter J. King, Robert C. Fowkes, Amanda M. de Mestre

Abstract

Equine chorionic gonadotrophin (eCG) is a placental glycoprotein critical for early equine pregnancy and used therapeutically in a number of species to support reproductive activity. The factors in trophoblast that transcriptionally regulate eCGβ-subunit (LHB), the gene which confers the hormones specificity for the receptor, are not known. The aim of this study was to determine if glial cells missing 1 regulates LHB promoter activity. Here, studies of the LHB proximal promoter identified four binding sites for glial cells missing 1 (GCM1) and western blot analysis confirmed GCM1 was expressed in equine chorionic girdle (ChG) and surrounding tissues. Luciferase assays demonstrated endogenous activity of the LHB promoter in BeWo choriocarcinoma cells with greatest activity by a proximal 335 bp promoter fragment. Transactivation studies in COS7 cells using an equine GCM1 expression vector showed GCM1 could transactivate the proximal 335 bp LHB promoter. Chromatin immunoprecipitation using primary ChG trophoblast cells showed GCM1 to preferentially bind to the most proximal GCM1-binding site over site 2. Mutation of site 1 but not site 2 resulted in a loss of endogenous promoter activity in BeWo cells and failure of GCM1 to transactivate the promoter in COS-7 cells. Together, these data show that GCM1 binds to site 1 in the LHB promoter but also requires the upstream segment of the LHB promoter between -119 bp and -335 bp of the translation start codon for activity. GCM1 binding partners, ETV1, ETV7, HOXA13, and PITX1, were found to be differentially expressed in the ChG between days 27 and 34 and are excellent candidates for this role. In conclusion, GCM1 was demonstrated to drive the LHB promoter, through direct binding to a predicted GCM1-binding site, with requirement for another factor(s) to bind the proximal promoter to exert this function. Based on these findings, we hypothesize that ETV7 and HOXA13 act in concert with GCM1 to initiate LHB transcription between days 30 and 31, with ETV1 partnering with GCM1 to maintain transcription.

Timeline

Login to access the full chart related to this output.

If you don’t have an account, click here to discover Explorer

X Demographics

X Demographics

The data shown below were collected from the profiles of 6 X users who shared this research output. Click here to find out more about how the information was compiled.
As of 1 July 2024, you may notice a temporary increase in the numbers of X profiles with Unknown location. Click here to learn more.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 7 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 7 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 2 29%
Professor > Associate Professor 1 14%
Lecturer > Senior Lecturer 1 14%
Student > Master 1 14%
Unknown 2 29%
Readers by discipline Count As %
Veterinary Science and Veterinary Medicine 2 29%
Agricultural and Biological Sciences 2 29%
Immunology and Microbiology 1 14%
Unknown 2 29%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 6. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 28 April 2018.
All research outputs
#6,751,502
of 25,932,719 outputs
Outputs from Frontiers in endocrinology
#1,873
of 13,317 outputs
Outputs of similar age
#106,815
of 342,225 outputs
Outputs of similar age from Frontiers in endocrinology
#47
of 229 outputs
Altmetric has tracked 25,932,719 research outputs across all sources so far. This one has received more attention than most of these and is in the 73rd percentile.
So far Altmetric has tracked 13,317 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 5.1. This one has done well, scoring higher than 85% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 342,225 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 68% of its contemporaries.
We're also able to compare this research output to 229 others from the same source and published within six weeks on either side of this one. This one has done well, scoring higher than 79% of its contemporaries.