↓ Skip to main content

Interactions Between the Neuroendocrine System and T Lymphocytes in Diabetes

Overview of attention for article published in Frontiers in endocrinology, May 2018
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
2 X users

Readers on

mendeley
35 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Interactions Between the Neuroendocrine System and T Lymphocytes in Diabetes
Published in
Frontiers in endocrinology, May 2018
DOI 10.3389/fendo.2018.00229
Pubmed ID
Authors

Luz Andreone, María Laura Gimeno, Marcelo J. Perone

Abstract

It is well established that there is a fine-tuned bidirectional communication between the immune and neuroendocrine tissues in maintaining homeostasis. Several types of immune cells, hormones, and neurotransmitters of different chemical nature are involved as communicators between organs. Apart of being key players of the adaptive arm of the immune system, it has been recently described that T lymphocytes are involved in the modulation of metabolism of several tissues in health and disease. Diabetes may result mainly from lack of insulin production (type 1 diabetes) or insufficient insulin and insulin resistance (type 2 diabetes), both influenced by genetic and environmental components. Herein, we discuss accumulating data regarding the role of the adaptive arm of the immune system in the pathogenesis of diabetes; including the action of several hormones and neurotransmitters influencing on central and peripheral T lymphocytes development and maturation, particularly under the metabolic burden triggered by diabetes. In addition, we comment on the role of T-effector lymphocytes in adipose and liver tissues during diabetes, which together enhances pancreatic β-cell stress aggravating the disease.

Timeline

Login to access the full chart related to this output.

If you don’t have an account, click here to discover Explorer

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
As of 1 July 2024, you may notice a temporary increase in the numbers of X profiles with Unknown location. Click here to learn more.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 35 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 35 100%

Demographic breakdown

Readers by professional status Count As %
Student > Doctoral Student 7 20%
Student > Master 5 14%
Student > Bachelor 5 14%
Researcher 4 11%
Student > Postgraduate 3 9%
Other 7 20%
Unknown 4 11%
Readers by discipline Count As %
Medicine and Dentistry 9 26%
Immunology and Microbiology 6 17%
Biochemistry, Genetics and Molecular Biology 3 9%
Agricultural and Biological Sciences 3 9%
Neuroscience 2 6%
Other 4 11%
Unknown 8 23%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 09 January 2022.
All research outputs
#19,951,180
of 25,382,440 outputs
Outputs from Frontiers in endocrinology
#5,759
of 13,021 outputs
Outputs of similar age
#251,327
of 342,434 outputs
Outputs of similar age from Frontiers in endocrinology
#125
of 217 outputs
Altmetric has tracked 25,382,440 research outputs across all sources so far. This one is in the 18th percentile – i.e., 18% of other outputs scored the same or lower than it.
So far Altmetric has tracked 13,021 research outputs from this source. They receive a mean Attention Score of 4.9. This one is in the 48th percentile – i.e., 48% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 342,434 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 22nd percentile – i.e., 22% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 217 others from the same source and published within six weeks on either side of this one. This one is in the 35th percentile – i.e., 35% of its contemporaries scored the same or lower than it.