↓ Skip to main content

Augmented Fibroblast Growth Factor-23 Secretion in Bone Locally Contributes to Impaired Bone Mineralization in Chronic Kidney Disease in Mice

Overview of attention for article published in Frontiers in endocrinology, June 2018
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
18 Dimensions

Readers on

mendeley
33 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Augmented Fibroblast Growth Factor-23 Secretion in Bone Locally Contributes to Impaired Bone Mineralization in Chronic Kidney Disease in Mice
Published in
Frontiers in endocrinology, June 2018
DOI 10.3389/fendo.2018.00311
Pubmed ID
Authors

Olena Andrukhova, Christiane Schüler, Claudia Bergow, Alexandra Petric, Reinhold G. Erben

Abstract

Chronic kidney disease-mineral and bone disorder (CKD-MBD) is a systemic disorder of mineral and bone metabolism caused by CKD. Impaired bone mineralization together with increased bony secretion of fibroblast growth factor-23 (FGF23) are hallmarks of CKD-MBD. We recently showed that FGF23 suppresses the expression of tissue nonspecific alkaline phosphatase (TNAP) in bone cells by a Klotho-independent, FGF receptor-3-mediated signaling axis, leading to the accumulation of the mineralization inhibitor pyrophosphate. Therefore, we hypothesized that excessive FGF23 secretion may locally impair bone mineralization in CKD-MBD. To test this hypothesis, we induced CKD by 5/6 nephrectomy in 3-month-old wild-type (WT) mice and Fgf23-/-/VDRΔ/Δ (Fgf23/VDR) compound mutant mice maintained on a diet enriched with calcium, phosphate, and lactose. Eight weeks postsurgery, WT CKD mice were characterized by reduced bone mineral density at the axial and appendicular skeleton, hyperphosphatemia, secondary hyperparathyroidism, increased serum intact Fgf23, and impaired bone mineralization as evidenced by bone histomorphometry. Laser capture microdissection in bone cryosections showed that both osteoblasts and osteocytes contributed to the CKD-induced increase in Fgf23 mRNA abundance. In line with our hypothesis, osteoblastic and osteocytic activity of alkaline phosphatase was reduced, and bone pyrophosphate concentration was ~2.5-fold higher in CKD mice, relative to Sham controls. In Fgf23/VDR compound mice lacking Fgf23, 5/6-Nx induced secondary hyperparathyroidism and bone loss. However, 5/6-Nx failed to suppress TNAP activity, and bone pyrophosphate concentrations remained unchanged in Fgf23/VDR CKD mice. Collectively, our data suggest that elevated Fgf23 production in bone contributes to the mineralization defect in CKD-MBD by auto-/paracrine suppression of TNAP and subsequent accumulation of pyrophosphate in bone. Hence, our study has identified a novel mechanism involved in the pathogenesis of CKD-MBD.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
As of 1 July 2024, you may notice a temporary increase in the numbers of X profiles with Unknown location. Click here to learn more.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 33 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 33 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 8 24%
Student > Master 4 12%
Student > Bachelor 3 9%
Lecturer 2 6%
Other 2 6%
Other 6 18%
Unknown 8 24%
Readers by discipline Count As %
Medicine and Dentistry 10 30%
Biochemistry, Genetics and Molecular Biology 4 12%
Veterinary Science and Veterinary Medicine 3 9%
Nursing and Health Professions 3 9%
Unspecified 1 3%
Other 2 6%
Unknown 10 30%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 11 June 2018.
All research outputs
#20,663,600
of 25,382,440 outputs
Outputs from Frontiers in endocrinology
#6,739
of 13,021 outputs
Outputs of similar age
#265,975
of 341,432 outputs
Outputs of similar age from Frontiers in endocrinology
#143
of 215 outputs
Altmetric has tracked 25,382,440 research outputs across all sources so far. This one is in the 10th percentile – i.e., 10% of other outputs scored the same or lower than it.
So far Altmetric has tracked 13,021 research outputs from this source. They receive a mean Attention Score of 4.9. This one is in the 35th percentile – i.e., 35% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 341,432 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 12th percentile – i.e., 12% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 215 others from the same source and published within six weeks on either side of this one. This one is in the 12th percentile – i.e., 12% of its contemporaries scored the same or lower than it.