↓ Skip to main content

Understanding Alcoholism Through microRNA Signatures in Brains of Human Alcoholics

Overview of attention for article published in Frontiers in Genetics, January 2012
Altmetric Badge

About this Attention Score

  • Good Attention Score compared to outputs of the same age (72nd percentile)
  • Good Attention Score compared to outputs of the same age and source (71st percentile)

Mentioned by

twitter
3 X users
peer_reviews
1 peer review site

Citations

dimensions_citation
59 Dimensions

Readers on

mendeley
61 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Understanding Alcoholism Through microRNA Signatures in Brains of Human Alcoholics
Published in
Frontiers in Genetics, January 2012
DOI 10.3389/fgene.2012.00043
Pubmed ID
Authors

Yury O. Nunez, R. Dayne Mayfield

Abstract

Advances in the fields of genomics and genetics in the last decade have identified a large number of genes that can potentially influence alcohol-drinking behavior in humans as well as animal models. Consequently, the task of identifying efficient molecular targets that could be used to develop effective therapeutics against the disease has become increasingly daunting. One of the reasons for this is the fact that each of the many alcohol-responsive genes only contributes a small effect to the overall mechanism and disease phenotype, as is characteristic of complex traits. Current research trends are hence shifting toward the analysis of gene networks rather than emphasizing individual genes. The discovery of microRNAs and their mechanisms of action on regulation of transcript level and protein translation have made evident the utility of these small non-coding RNA molecules that act as central coordinators of multiple cross-communicating cellular pathways. Cells exploit the fact that a single microRNA can target hundreds of mRNA transcripts and that a single mRNA transcript can be simultaneously targeted by distinct microRNAs, to ensure fine-tuned and/or redundant control over a large number of cellular functions. By the same token, we can use these properties of microRNAs to develop novel, targeted strategies to combat complex disorders. In this review, we will focus on recent discoveries of microRNA signatures in brain of human alcoholics supporting the hypothesis that changes in gene expression and regulation by microRNAs are responsible for long-term neuroadaptations occurring during development of alcoholism. We also discuss insights into the potential modulation of epigenetic regulators by a subset of microRNAs. Taken together, microRNA activity may be controlling many of the cellular mechanisms already known to be involved in the development of alcoholism, and suggests potential targets for the development of novel therapeutic interventions.

Timeline

Login to access the full chart related to this output.

If you don’t have an account, click here to discover Explorer

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
As of 1 July 2024, you may notice a temporary increase in the numbers of X profiles with Unknown location. Click here to learn more.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 61 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United States 1 2%
Egypt 1 2%
Unknown 59 97%

Demographic breakdown

Readers by professional status Count As %
Researcher 19 31%
Student > Bachelor 9 15%
Student > Ph. D. Student 7 11%
Student > Master 5 8%
Other 3 5%
Other 7 11%
Unknown 11 18%
Readers by discipline Count As %
Agricultural and Biological Sciences 20 33%
Biochemistry, Genetics and Molecular Biology 9 15%
Medicine and Dentistry 7 11%
Neuroscience 3 5%
Psychology 3 5%
Other 6 10%
Unknown 13 21%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 4. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 24 October 2014.
All research outputs
#7,432,670
of 23,577,761 outputs
Outputs from Frontiers in Genetics
#2,357
of 12,604 outputs
Outputs of similar age
#68,932
of 247,799 outputs
Outputs of similar age from Frontiers in Genetics
#70
of 255 outputs
Altmetric has tracked 23,577,761 research outputs across all sources so far. This one has received more attention than most of these and is in the 68th percentile.
So far Altmetric has tracked 12,604 research outputs from this source. They receive a mean Attention Score of 3.7. This one has done well, scoring higher than 81% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 247,799 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 72% of its contemporaries.
We're also able to compare this research output to 255 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 71% of its contemporaries.