↓ Skip to main content

Evaluation of genetic risk score models in the presence of interaction and linkage disequilibrium

Overview of attention for article published in Frontiers in Genetics, January 2013
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
4 X users
facebook
1 Facebook page

Citations

dimensions_citation
53 Dimensions

Readers on

mendeley
55 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Evaluation of genetic risk score models in the presence of interaction and linkage disequilibrium
Published in
Frontiers in Genetics, January 2013
DOI 10.3389/fgene.2013.00138
Pubmed ID
Authors

Ronglin Che, Alison A. Motsinger-Reif

Abstract

In the area of genetic epidemiology, genetic risk predictive modeling is becoming an important area of translational success. As an increasing number of genetic variants are successfully discovered, the use of multiple genetic variants in constructing a genetic risk score (GRS) for modeling has been widely applied using a variety of approaches. Previously, we compared the performance of a simple, additive GRS with weighted GRS approaches, but our initial simulation experiment assumed very simple models without many of the complications found in real genetic studies. In particular, interactions between variants and linkage disequilibrium (LD) (indirect mapping) remain important and challenging problems for GRS modeling. In the present study, we applied two simulation strategies to mimic various types of epistasis to evaluate their impact on the performance of the GRS models. We simulated a range of models demonstrating statistical interaction and linkage disequilibrium. Three genetic risk models were compared in terms of power, type I error, C-statistic and AIC, including a simple count GRS (SC-GRS), an odds ratio weighted GRS (OR-GRS) and an explained variance weighted GRS (EV-GRS). Simulation factors of interest included allele frequencies, effect sizes, strengths of interaction, degrees of LD and heritability. We extensively examined the extent to how these interactions could influence the performance of genetic risk models. Our results show that the weighted methods outperform simple count method in general even if interaction or LD is present, with well controlled type I error.

X Demographics

X Demographics

The data shown below were collected from the profiles of 4 X users who shared this research output. Click here to find out more about how the information was compiled.
As of 1 July 2024, you may notice a temporary increase in the numbers of X profiles with Unknown location. Click here to learn more.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 55 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United States 2 4%
New Zealand 1 2%
Unknown 52 95%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 13 24%
Researcher 9 16%
Student > Master 8 15%
Student > Doctoral Student 7 13%
Student > Bachelor 4 7%
Other 7 13%
Unknown 7 13%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 17 31%
Agricultural and Biological Sciences 10 18%
Medicine and Dentistry 7 13%
Mathematics 3 5%
Pharmacology, Toxicology and Pharmaceutical Science 2 4%
Other 7 13%
Unknown 9 16%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 15 September 2015.
All research outputs
#13,892,191
of 22,714,025 outputs
Outputs from Frontiers in Genetics
#3,495
of 11,756 outputs
Outputs of similar age
#164,394
of 280,752 outputs
Outputs of similar age from Frontiers in Genetics
#147
of 319 outputs
Altmetric has tracked 22,714,025 research outputs across all sources so far. This one is in the 37th percentile – i.e., 37% of other outputs scored the same or lower than it.
So far Altmetric has tracked 11,756 research outputs from this source. They receive a mean Attention Score of 3.7. This one has gotten more attention than average, scoring higher than 67% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 280,752 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 40th percentile – i.e., 40% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 319 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 50% of its contemporaries.