↓ Skip to main content

A revised Fisher model on analysis of quantitative trait loci with multiple alleles

Overview of attention for article published in Frontiers in Genetics, September 2014
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
4 Dimensions

Readers on

mendeley
5 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
A revised Fisher model on analysis of quantitative trait loci with multiple alleles
Published in
Frontiers in Genetics, September 2014
DOI 10.3389/fgene.2014.00328
Pubmed ID
Authors

Tao Wang

Abstract

Zeng et al. (2005) proposed a general two-allele (G2A) model to model bi-allelic quantitative trait loci (QTL). Comparing with the classical Fisher model, the G2A model can avoid using redundant parameters and be fitted directly using standard least square (LS) approach. In this study, we further extend the G2A model to general multi-allele (GMA) model. First, we propose a one-locus GMA model for phase known genotypes based on modeling the inheritance of paternal and maternal alleles. Next, we develop a one-locus GMA model for phase unknown genotypes by treating it as a special case of the phase known one-locus GMA model. Thirdly, we extend the one-locus GMA models to multiple loci. We discuss how the genetic variance components can be analyzed using these GMA models in equilibrium as well as disequilibrium populations. Finally, we apply the GMA model to a published experimental data set.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
As of 1 July 2024, you may notice a temporary increase in the numbers of X profiles with Unknown location. Click here to learn more.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 5 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 5 100%

Demographic breakdown

Readers by professional status Count As %
Student > Doctoral Student 1 20%
Professor 1 20%
Student > Master 1 20%
Researcher 1 20%
Student > Postgraduate 1 20%
Other 0 0%
Readers by discipline Count As %
Agricultural and Biological Sciences 5 100%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 25 September 2014.
All research outputs
#20,237,640
of 22,764,165 outputs
Outputs from Frontiers in Genetics
#8,564
of 11,758 outputs
Outputs of similar age
#210,700
of 252,140 outputs
Outputs of similar age from Frontiers in Genetics
#96
of 111 outputs
Altmetric has tracked 22,764,165 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 11,758 research outputs from this source. They receive a mean Attention Score of 3.7. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 252,140 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 111 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.