↓ Skip to main content

Alpers disease mutations in human DNA polymerase gamma cause catalytic defects in mitochondrial DNA replication by distinct mechanisms

Overview of attention for article published in Frontiers in Genetics, April 2015
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
4 X users

Citations

dimensions_citation
14 Dimensions

Readers on

mendeley
26 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Alpers disease mutations in human DNA polymerase gamma cause catalytic defects in mitochondrial DNA replication by distinct mechanisms
Published in
Frontiers in Genetics, April 2015
DOI 10.3389/fgene.2015.00135
Pubmed ID
Authors

Yufeng Qian, Jessica L. Ziehr, Kenneth A. Johnson

Abstract

The human mitochondrial DNA polymerase gamma (Pol-γ) is nuclearly encoded and is responsible for the replication and repair of the mitochondrial genome. Mutations S305R and P1073L in the POLG gene have been reported to be associated with early childhood Alpers syndrome. One patient harboring both mutations as compound heterozygous died at 2 years of age after disease onset at 9 months. Quantitative kinetic analysis on purified enzyme showed that the S305R mutation reduces the DNA binding affinity by 10-fold, and reduces the specificity constant (k cat /K m) for correct nucleotide incorporation by fourfold. It also causes a ∼threefold reduction in the excision rate to remove mismatched nucleotides. Compared to the wild-type Pol-γ, the S305R mutant showed no product formation in a reconstituted rolling circle replisome assay. Interestingly, the P1073L mutant exhibited wild-type activity in single turnover kinetics to quantify changes in k cat /K m, k cat, k exo, or processivity, and showed a twofold decrease in the net polymerization rate in the reconstituted replisome assay, while in yeast, P1073L caused a 60-70% mtDNA reduction in haploid cells. The heterozygous diploid yeast cells carrying S305R and P1073L mutations in trans showed ∼75% reduction of mtDNA content, relative to homozygous diploid cells with two wild-type alleles. Taken together, we show clearly in both the rolling circle and the humanized yeast system that the P1073L mutation caused significant defects in mtDNA replication, and our results suggest a role for P1073 in the functioning of the Pol-γ with the mitochondrial DNA helicase, and provide a rationale for understanding the physiological consequences of the S305R/P1073L compound heterozygote in humans.

X Demographics

X Demographics

The data shown below were collected from the profiles of 4 X users who shared this research output. Click here to find out more about how the information was compiled.
As of 1 July 2024, you may notice a temporary increase in the numbers of X profiles with Unknown location. Click here to learn more.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 26 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 26 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 5 19%
Student > Master 4 15%
Student > Ph. D. Student 4 15%
Lecturer > Senior Lecturer 2 8%
Student > Doctoral Student 2 8%
Other 3 12%
Unknown 6 23%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 8 31%
Agricultural and Biological Sciences 5 19%
Neuroscience 3 12%
Medicine and Dentistry 2 8%
Business, Management and Accounting 1 4%
Other 1 4%
Unknown 6 23%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 02 June 2015.
All research outputs
#13,431,543
of 22,799,071 outputs
Outputs from Frontiers in Genetics
#3,248
of 11,761 outputs
Outputs of similar age
#128,220
of 264,944 outputs
Outputs of similar age from Frontiers in Genetics
#86
of 135 outputs
Altmetric has tracked 22,799,071 research outputs across all sources so far. This one is in the 39th percentile – i.e., 39% of other outputs scored the same or lower than it.
So far Altmetric has tracked 11,761 research outputs from this source. They receive a mean Attention Score of 3.7. This one has gotten more attention than average, scoring higher than 70% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 264,944 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 50% of its contemporaries.
We're also able to compare this research output to 135 others from the same source and published within six weeks on either side of this one. This one is in the 34th percentile – i.e., 34% of its contemporaries scored the same or lower than it.