↓ Skip to main content

An Enhancer's Length and Composition Are Shaped by Its Regulatory Task

Overview of attention for article published in Frontiers in Genetics, May 2017
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (85th percentile)
  • High Attention Score compared to outputs of the same age and source (82nd percentile)

Mentioned by

twitter
25 X users
facebook
1 Facebook page

Citations

dimensions_citation
37 Dimensions

Readers on

mendeley
69 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
An Enhancer's Length and Composition Are Shaped by Its Regulatory Task
Published in
Frontiers in Genetics, May 2017
DOI 10.3389/fgene.2017.00063
Pubmed ID
Authors

Lily Li, Zeba Wunderlich

Abstract

Enhancers drive the gene expression patterns required for virtually every process in metazoans. We propose that enhancer length and transcription factor (TF) binding site composition-the number and identity of TF binding sites-reflect the complexity of the enhancer's regulatory task. In development, we define regulatory task complexity as the number of fates specified in a set of cells at once. We hypothesize that enhancers with more complex regulatory tasks will be longer, with more, but less specific, TF binding sites. Larger numbers of binding sites can be arranged in more ways, allowing enhancers to drive many distinct expression patterns, and therefore cell fates, using a finite number of TF inputs. We compare ~100 enhancers patterning the more complex anterior-posterior (AP) axis and the simpler dorsal-ventral (DV) axis in Drosophila and find that the AP enhancers are longer with more, but less specific binding sites than the (DV) enhancers. Using a set of ~3,500 enhancers, we find enhancer length and TF binding site number again increase with increasing regulatory task complexity. Therefore, to be broadly applicable, computational tools to study enhancers must account for differences in regulatory task.

X Demographics

X Demographics

The data shown below were collected from the profiles of 25 X users who shared this research output. Click here to find out more about how the information was compiled.
As of 1 July 2024, you may notice a temporary increase in the numbers of X profiles with Unknown location. Click here to learn more.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 69 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 69 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 15 22%
Student > Master 12 17%
Researcher 11 16%
Student > Bachelor 9 13%
Student > Doctoral Student 4 6%
Other 5 7%
Unknown 13 19%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 31 45%
Agricultural and Biological Sciences 15 22%
Computer Science 3 4%
Unspecified 1 1%
Mathematics 1 1%
Other 4 6%
Unknown 14 20%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 14. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 08 April 2021.
All research outputs
#2,273,233
of 22,952,268 outputs
Outputs from Frontiers in Genetics
#547
of 11,974 outputs
Outputs of similar age
#45,280
of 313,507 outputs
Outputs of similar age from Frontiers in Genetics
#11
of 56 outputs
Altmetric has tracked 22,952,268 research outputs across all sources so far. Compared to these this one has done particularly well and is in the 90th percentile: it's in the top 10% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 11,974 research outputs from this source. They receive a mean Attention Score of 3.7. This one has done particularly well, scoring higher than 95% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 313,507 tracked outputs that were published within six weeks on either side of this one in any source. This one has done well, scoring higher than 85% of its contemporaries.
We're also able to compare this research output to 56 others from the same source and published within six weeks on either side of this one. This one has done well, scoring higher than 82% of its contemporaries.